
Contents

1 Welcome 3

2 The short guide to service definitions 5

3 A short guide to routing 11

4 Preventing flickering 15

5 Conditionally applying CSS classes 19

6 Setting configs in angular 23

7 The Power of Expression Binding 29

8 Optimizing Angular: the view (part 1) 35

9 Optimizing Angular: the view (part 2) 39

10 Getting connected to data 43

11 Real-time Presence Made Easy with AngularJS and Firebase 49

12 Pushy Angular 55

13 AngularJS SEO, mistakes to avoid. 61

1

2 CONTENTS

14 AngularJS with ngAnimate 65

What directives support animations? 65

CSS3 Transitions & Keyframe Animations 66

JavaScript Animations . 69

Triggering Animations inside of our own Directives 71

Learn more! Become a Pro . 72

15 HTML5 api: geolocation 73

16 HTML5 api: camera 79

17 Good deals – Angular and Groupon 85

18 Staggering animations with ngAnimate 89

How can we put this to use? . 89

What about CSS3 Keyframe Animations? 91

What directives support this? . 93

But what about JS animations? . 93

Where can I learn more? . 93

19 Getting started unit-testing Angular 95

20 Build a Real-Time, Collaborative Wishlist with GoAngular v2101

Sign up for GoInstant . 103

Include GoInstant & GoAngular . 103

Create and Join a Room . 104

Fetch our wishes . 104

Watch our wishes, so we know when they change 105

21 Immediately satisfying users with a splash page 107

22 A Few of My Favorite Things: Isolated Expression Scope 111

23 Conclusion 119

Chapter 1

Welcome

Congrats on grabbing ng-newsletter.com’s mini AngularJS cookbook. In this
mini-cookbook, we’ll walk through beginner and intermediate recipes to get
up and running with Angular quickly without the fluff. As we walk through
this book, we encourage you to try out the recipes. We’ve found that working
through them helps both memory and understanding.

We had a lot of fun writing these mini-recipes and we hope you enjoy using
them!

3

http://ng-newsletter.com

4 CHAPTER 1. WELCOME

Chapter 2

The short guide to service
definitions

One of the most misunderstood components of Angular that beginners often ask
is about the differences between the service(), factory(), and provide() methods.
This is where we’ll start the twenty-five days of Angular calendar.

The Service

In Angular, services are singleton objects that are created when necessary and
are never cleaned up until the end of the application life-cycle (when the browser
is closed). Controllers are destroyed and cleaned up when they are no longer
needed.

This is why we can’t dependably use controllers to share data across
our application, especially when using routing.Services are designed
to be the glue between controllers, the minions of data, the slaves of
functionality, the worker-bees of our application.

Let’s dive into creating service. Every method that we’ll look at has the same
method signature as it takes two arguments

• name - the name of the service we’re defining
• function - the service definition function.

Each one also creates the same underlying object type. After they are instanti-
ated, they all create a service and there is no functional difference between the
object types.

5

6 CHAPTER 2. THE SHORT GUIDE TO SERVICE DEFINITIONS

factory()

Arguably the easiest way to create a service is by using the factory() method.

The factory() method allows us to define a service by returning an object that
contains service functions and service data. The service definition function is
where we place our injectable services, such as $http and $q.

angular.module('myApp.services')
.factory('User', function($http) { // injectables go here

var backendUrl = "http://localhost:3000";
var service = {
// our factory definition
user: {},
setName: function(newName) {
service.user['name'] = newName;

},
setEmail: function(newEmail) {
service.user['email'] = newEmail;

},
save: function() {

return $http.post(backendUrl + '/users', {
user: service.user

});
}

};
return service;

});

Using the factory() in our app

It’s easy to use the factory in our application as we can simply inject it where
we need it at run-time.

angular.module('myApp')
.controller('MainController', function($scope, User) {
$scope.saveUser = User.save;

});

When to use the factory() method

The factory() method is a great choice to use to build a factory
when we just need a collection of methods and data and don’t need
to do anything especially complex with our service.

7

We cannot use the factory() method when we need to configure our
service from the .config() function.

service()

The service() method, on the other hand allows us to create a service by defining
a constructor function. We can use a prototypical object to define our service,
instead of a raw javascript object.

Similar to the factory() method, we’ll also set the injectables in the function
definition:

angular.module('myApp.services')
.service('User', function($http) { // injectables go here

var self = this; // Save reference
this.user = {};
this.backendUrl = "http://localhost:3000";
this.setName = function(newName) {
self.user['name'] = newName;

}
this.setEmail = function(newEmail) {
self.user['email'] = newEmail;

}
this.save = function() {

return $http.post(self.backendUrl + '/users', {
user: self.user

})
}

});

Functionally equivalent to using the factory() method, the service() method will
hold on to the object created by the constructor object.

Using the service() in our app

It’s easy to use the service in our application as we can simply inject it where
we need it at run-time.

angular.module('myApp')
.controller('MainController', function($scope, User) {
$scope.saveUser = User.save;

});

8 CHAPTER 2. THE SHORT GUIDE TO SERVICE DEFINITIONS

When to use the service() method

The service() method is great for creating services where we need
a bit more control over the functionality required by our service. It’s
also mostly guided by preference to use this instead of referring to
the service.

We cannot use the service() method when we need to configure our
service from the .config() function.

provide()

The lowest level way to create a service is by using the provide() method. This
is the only way to create a service that we can configure using the .config()
function.

Unlike the previous to methods, we’ll set the injectables in a defined this.$get()
function definition.

angular.module('myApp.services')
.provider('User', function() {

this.backendUrl = "http://localhost:3000";
this.setBackendUrl = function(newUrl) {

if (url) this.backendUrl = newUrl;
}
this.$get = function($http) { // injectables go here

var self = this;
var service = {
user: {},
setName: function(newName) {
service.user['name'] = newName;

},
setEmail: function(newEmail) {
service.user['email'] = newEmail;

},
save: function() {

return $http.post(self.backendUrl + '/users', {
user: service.user

})
}

};
return service;

}
});

9

Using the provider() in our app

In order to configure our service, we can inject the provider into our .config()
function.

angular.module('myApp')
.config(function(UserProvider) {
UserProvider.setBackendUrl("http://myApiBackend.com/api");

})

We can use the service in our app just like any other service now:

angular.module('myApp')
.controller('MainController', function($scope, User) {
$scope.saveUser = User.save;

});

When to use the provider() method

The provider() method is required when we want to configure our service
before the app runs. For instance, if we need to configure our services to use a
different back-end based upon different deployment environments (development,
staging, and production).

It’s the preferred method for writing services that we intend on distributing
open-source as well as it allows us to configure services without needing to
hard-code configuration data.

The code for this entire snippet is available here.

http://d.pr/PYhw

10 CHAPTER 2. THE SHORT GUIDE TO SERVICE DEFINITIONS

Chapter 3

A short guide to routing

Almost all non-trivial, non-demo Single Page App (SPA) require multiple pages.
A settings page is different from a dashboard view. The login page is different
from an accounts page.

We can get this functionality with Angular incredibly simply and elegantly using
the angular.route module.

Installation

In order to actually use routes, we’ll need to install the routing module. This is
very easy and can be accomplished in a few ways:

Using bower

$ bower install --save angular-route

Saving the raw source

Alternatively, we can save the source directly from angularjs.org by clicking on
the big download button and then clicking on the extras link. From there, we
can simply save the file to somewhere accessible by our application.

Usage

It’s easy to define routes. In our main module, we’ll need to inject the ngRoute
module as a dependency of our app.

11

http://angularjs.org

12 CHAPTER 3. A SHORT GUIDE TO ROUTING

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider) {});

Now, we can define the routes of our application. The route module adds a
$routeProvider that we can inject into our .config() function. It presents us two
methods that we can use to define our routes.

when()

The when() method defines our routes. It takes two arguments, the string of
the route that we want to match and a route definition object. The route string
will match on the url in the browser. The main route of the app is usually the
/ route.

The route definition can also accept symbols that will be substituted by angular
and inserted into a service called the $routeParams that we can access from our
routes.

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider) {
$routeProvider
.when('/', {
templateUrl: 'views/main.html',
controller: 'MainController'

})
.when('/day/:id', {
templateUrl: 'views/day.html',
controller: 'DayController'

})

The route definition object is where we’ll define all of our routes from a high-
level. This is where we’ll assign a controller to manages the section in the DOM,
the templates that we can use, and other route-specific functionality.

Most often, we’ll set these routes with a controller and a templateUrl to define
the functionality of the route.

otherwise()

The otherwise() method defines the route that our application will use if a route
is not found. It’s the default route.

For example, the route definition for this calendar is:

13

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider) {
$routeProvider
.when('/', {
templateUrl: 'views/main.html',
controller: 'MainController'

})
.when('/day/:id', {
templateUrl: 'views/day.html',
controller: 'DayController'

})
.otherwise({
redirectTo: '/'

});
})

Using in the view

Okay, so we’ve defined routes for our application, now how do we actually use
them in our app?

As a route is simply a new view with new functionality for a portion of a page,
we’ll need to tell angular which portion of the page we want to switch. To do
this, we’ll use the ng-view directive:

<div class="header">My page</div>
<div ng-view></div>
A footer

Now, anytime that we switch a route, only the DOM element (<div
ng-view></div>) will be updated and the header/footer will stay the same.

14 CHAPTER 3. A SHORT GUIDE TO ROUTING

Chapter 4

Preventing flickering

When a particular page or component of our application requires data be avail-
able on the page when it loads up, there will be time between when the browser
renders the page and angular does. This gap may be tiny so we don’t even see
the difference or it can be long such that our users see the un-rendered content.

This behavior is called Flash Of Unrendered Content (FOUC) and is always
unwanted. In this snippet, we’ll explore a few different ways to prevent this
from happening for our users.

ng-cloak

The ng-cloak directive is a built-in angular directive that hides all of the ele-
ments on the page that contain the directive.

<div ng-cloak>
<h1>Hello {{ name }}</h1>

</div>

After the browser is done loading and the compile phase of the template is
rendering, angular will delete the ngCloak element attribute and the element
will become visible.

The safest way to make this IE7 safe is to also add a class of ng-cloak:

<div ng-cloak class="ng-cloak">
<h1>Hello {{ name }}</h1>

</div>

15

16 CHAPTER 4. PREVENTING FLICKERING

ng-bind

The ng-bind directive is another built-in Angular directive that handles data-
binding in the view. We can use ng-bind instead of using the {{ }} form to
bind elements to the page.

Using ng-bind instead of {{ }} will prevent the unrendered {{ }} from showing
up instead of empty elements being rendered.

The example from above can be rewritten to the following which will prevent
the page from flickering with {{ }}:

<div>
<h1>Hello </h1>

</div>

resolve

When we’re using routes with different pages, we have another option to prevent
pages from rendering until some data has been loaded into the route.

We can specify data that we need loaded before the route is done loading by
using the resolve key in our route options object.

When the data loads successfully, then the route is changed and the view will
show up. If it’s not loaded successfully, then the route will not change and the
$routeChangeError event will get fired.

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider) {
$routeProvider
.when('/account', {
controller: 'AccountController',
templateUrl: 'views/account.html',
resolve: {
// We specify a promise to be resolved
account: function($q) {

var d = $q.defer();
$timeout(function() {
d.resolve({
id: 1,
name: 'Ari Lerner'

})
}, 1000);
return d.promise;

}

17

}
})

});

The resolve option takes an object, by key/value where the key is the name
of the resolve dependency and the value is either a string (as a service) or a
function whose return value is taken as the dependency.

resolve is very useful when the resolve value returns a promise
that becomes resolved or rejected.

When the route loads, the keys from the resolve parameter are accessible as
injectable dependencies:

angular.module('myApp')
.controller('AccountController',

function($scope, account) {
$scope.account = account;

});

We can use the resolve key to pass back results from $http methods as well,
as $http returns promises from it’s method calls:

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider) {
$routeProvider
.when('/account', {
controller: 'AccountController',
templateUrl: 'views/account.html',
resolve: {
account: function($http) {

return $http.get('http://example.com/account.json')
}

}
})

});

The recommended usage of the resolve key is to define a service and let the
service respond with the required data (plus, this makes testing much easier).
To handle this, all we’ll need to do is build the service.

First, the accountService:

18 CHAPTER 4. PREVENTING FLICKERING

angular.module('app')
.factory('accountService', function($http, $q) {

return {
getAccount: function() {

var d = $q.defer();
$http.get('/account')
.then(function(response) {
d.resolve(response.data)

}, function err(reason) {
d.reject(reason);

});
return d.promise;

}
}

})

We can use this service method to replace the $http call from above:

angular.module('myApp', ['ngRoute'])
.config(function($routeProvider) {
$routeProvider
.when('/account', {
controller: 'AccountController',
templateUrl: 'views/account.html',
resolve: {
// We specify a promise to be resolved
account: function(accountService) {

return accountService.getAccount()
}

}
})

});

Chapter 5

Conditionally applying CSS
classes

Switching content based upon state is trivial inside of Angular, but how about
styles? For instance, let’s say that we have a list of elements, each with a
checkbox to indicate to our users that we’re selecting an element to run some
action on the element or to indicate that a date in a calendar is today (like on
the 25 days of Angular calendar front-page).

Angular has a number of built-in ways that we can apply custom styling to
DOM elements based upon different data states inside of our $scope objects.

ng-style

The ng-style directive is a built-in directive that allows us to set styles directly
on a DOM element based upon angular expressions.

<div ng-controller='DemoController'>
<h1 ng-style="{color:'blue'}">
Hello {{ name }}!

</h1>
</div>

The ng-style directive accepts an object or a function that returns an object
whose keys are CSS style names (such as color, font-size, etc) and the values
that correspond to the style key names.

In the above example, we’re hard-coding the style color, but we can easily change
that to either pass in a function that calculates and returns back the color or
we can pass in an object that contains the specific values for the style.

19

20 CHAPTER 5. CONDITIONALLY APPLYING CSS CLASSES

For example, we can use a dropdown to set the specific style on the element and
update a model with the selected color on the dropdown:

<div ng-controller='DemoController'>
<select ng-model="selectedColor"
ng-options="color for color in allColors">

</select>
<h1 ng-style="{color:selectedColor}">
Hello {{ name }}!

</h1>
</div>

The DemoController controller in this case looks like:

angular.module('adventApp')
.controller('DemoController', function($scope) {
$scope.allColors = ['blue', 'red', '#abc', '#bedded'];
$scope.selectedColor = 'blue';

});

When we change the selectedColor, the ng-style directive updates and our
HTML changes.

ng-class

The ng-class directive is available for us to apply different css classes to a
DOM object, instead of styles. Allowing us to set classes is often more powerful
than setting styles directly as we can define our CSS design separate from our
business logic of the app.

<div ng-controller='DemoController'>
<button ng-click="shouldHighlight=!shouldHighlight">
Highlight text

</button>
<h1 ng-class="{highlight:shouldHighlight}">
Hello {{ name }}!

</h1>
</div>

Functionally, it is similar to the ng-style directive as it accepts an object or a
function that returns an object to define the classes that are to be applied to
the DOM object.
As we can pass an object, we can set multiple conditionals on the element. This
flexibility enables us to define custom design for our elements.

21

<div ng-controller='DemoController'>
<button ng-click="shouldHighlight=!shouldHighlight">
Highlight text

</button>
<button ng-click="emphasize=!emphasize">
Emphasize

</button>
<h1 ng-class="{
important:emphasize,
highlight:shouldHighlight
}">
Hello {{ name }}!

</h1>
</div>

custom directive

Another solution we can use to create custom styles for our elements is by setting
up a directive to generate a custom CSS stylesheet for us.

When we need to set a large number of styles or we’re setting a lot of
styles for a particular custom page, we can use the custom directive
is an efficient method. For instance, if we’re building a site that we
allow users to customize a site of theirs.

A custom directive might look something like:

angular.module('myApp')
.directive('myStylesheet', function() {

return {
restrict: 'A',
require: 'ngModel',
scope: { ngModel: '=', className: '@' },
template: "<style " +
"type='text/stylesheet'>" +

".{{ className }} {" +
" font-size: {{ ngModel.fontsize }};" +
" color: {{ ngModel.color }};" +
"}" +
"</style>"

}
});

This directive will add a <style> tag to our page and allow us to pass in a
single ng-model that can contain our custom styles.

22 CHAPTER 5. CONDITIONALLY APPLYING CSS CLASSES

We can use this directive simply by attaching our data model that contains our
DOM element’s style on the tag.

<div ng-controller='DemoController'>
<div my-stylesheet
ng-model="pageObject"
class-name="customPage" >

</div>
<div class="customPage">

<h1>Hello</h1>
</div>

</div>

Chapter 6

Setting configs in angular

Like with any modern software development lifecycle that’s destined for produc-
tion, we’re likely to have multiple deployment destinations. We might have a
development server, a staging server, a production server, etc.

For each of these different scenarios, we’re probably using different versions of
the app, with the latest, bleeding edge version on development and staging and
the stable version in production.

Each of these likely is talking to different back-end services, is using different
individual settings, such as which back-end url we’re talking to, if we’re in
testing mode or not, etc.

Here are a few of the multiple methods for how we can handle separating out
our environments based upon deployment type. But first…

Configuration in Angular

The easiest way to use configuration inside of an Angular app is to set a constant
with an object. For example:

angular.module('myApp.config')
.constant('myConfig', {
'backend': 'http://localhost:3000/api',
'version': 0.2

})

Our Angular objects now have access to this myConfig as a service and can
inject it just like any other Angular service to get access to the configuration
variables:

23

24 CHAPTER 6. SETTING CONFIGS IN ANGULAR

angular.module('myApp', ['myApp.config'])
.factory('AccountSrv',
function($http, myConfig) {

return {
getAccount: function() {

return $http({
method: 'GET',
url: myConfig.backend + '/account'

})
// ...

}
}

});

In this example, we separate out the main app module from the one
that contains the configuration and then later set it as a dependency
of our main app. We’ll follow this pattern for all examples in this
snippet.

We’ll use this same pattern in the few different methods to get config data in
our app.

Server-side rendering

If we’re using a server-side rendering engine, such as Ruby on Rails or NodeJS
to deliver our application files, we can render out different JavaScript in/for the
view.

When we’re using Rails, this process is pretty simple (we’ll leave it as an exercise
for the reader to implement in different back-end solutions). Presumably our
configuration is set up using a hash object that looks similar to:

CONFIG = {
development: {
backend: "http://localhost:3000"

},
production: {
backend: "http://my.apibackend.com"

}
}

We can use this inside of our index.html.haml file to deliver rendered
JavaScript to our browser.

http://rubyonrails.org
http://nodejs.org

25

<!-- Our app content -->
div{'ng-view' => ""}
:javascript
angular.module('myApp.config', [])
= .constant('myConfig', #{CONFIG[Rails.env]})

%script{:src => "scripts/app.js"}

As with any separate module in Angular, we’ll add it as a dependency of our
main app and we’re good to go. We’ll write our app code to include the
myApp.config as a dependency and inject the configuration where we need
it:

angular.module('myApp', ['myApp.config'])
.service('AccountService',

function($http, myConfig) {
this.getAccount = function() {

return $http({
method: 'GET',
url: myConfig.backend+'/account.json'

});
}

});

Client-side

If we are not using a back-end to serve our app and cannot depend upon html
interpolation to render us back a configuration, we must depend upon configu-
ration at compile-time.

As we can see above, we can manually set our configuration files if we’re not
depending upon any complex configuration or deploying only to one or two
environments.

We will generate a file for each environment that contains the relevant configu-
ration for each environment. For instance, the development might look like:

angular.module('myApp.development', [])
.constant('myConfig', {
backend: 'http://dev.myapp.com:3000'

})

And the production might look like:

angular.module('myApp.production', [])
.constant('myConfig', {

26 CHAPTER 6. SETTING CONFIGS IN ANGULAR

backend: 'http://myapp.com'
})

Now, inside of our app, we’ll only need to switch a single line to define which
configuration it should use in production. As we said before, we’ll need to add
one of these to our dependencies of our app module:

angular.module('myApp', ['myApp.production'])
// ...

The tricky part of this is that we’ll need to manually change the configuration
file for each build. Although it’s not a difficult task for a single developer, this
can become a giant hassle for larger teams.

We can use our build tools instead of doing this configuration switch manually.

Using grunt to automate the process

Using Grunt, we can use the grunt-template task. This task allows us to
specify variables once and output a template of our choosing.

If you’re using yeoman to build your angular apps (and you should
be), this should look very familiar.

Installation

Installing grunt-template is easy to do with npm:

$ npm install --save-dev grunt-template

Since Gruntfiles are simply JavaScript, we can write our configuration in .json
files in our path and load them from our Gruntfile. Since we’re interested
in using different environments, we’ll set up our configuration files in a config
directory.

For instance, the development config file in config/development.json:

{
backend: 'http://dev.myapi.com:3000'

}

And the production version: config/production.json:

27

{
backend: 'http://myapp.com'

}

With these set, we’ll need to tackle two other tasks:

1. Loading the configuration for the current environment
2. Compiling the config into a template

To load the configuration for the current environment, we’ll simply use a bit
of JavaScript in our Gruntfile to take care of this process. At the top of the
Gruntfile we’ll load the following to load the right config into a variable we’ll
call config:

var env = process.env.ENV || 'development';

var config = require('./config/' + env + '.json');

This will set the configuration to load the object from config/development.json
by default. We can pass the environment variable ENV to set it to production:

$ ENV=production grunt build

Now all we need to do is compile our template. To do this, we’ll use the
grunt-template task:

grunt.initConfig({
// ...

'template': {
'config': {
'options': {
data: config

}
},
'files': {
// The .tmp destination is a yeoman
// default location. Set this dest
// to fit your own needs if not using
// yeoman
'.tmp/scripts/config.js':
['src/config.js.tpl']

}

28 CHAPTER 6. SETTING CONFIGS IN ANGULAR

}
// ...

});

grunt.loadNpmTasks('grunt-template');
grunt.registerTask('default', ['template']);

We’ll need to write our src/config.js template. This is the easy part as we’ll
simply generate the file we manually created above. In our src/config.js.tpl,
add the following:

angular.module('myApp.config', [])
.constant('myConfig', function() {
backend: '<%= backend %>'

});

With this automated process, we can eliminate the manual process of building
our configuration entirely.

Chapter 7

The Power of Expression
Binding

10 out of 10 developers agree that they love data-binding in Angular. This
glowing endorsement is well earned as it has saved us from having to write
truck loads of boilerplate code while increasing the testable surface area of our
application exponentially.

In this recipe, we look at some magic we can do with Angular.

New developers to Angular tend to follow a learning curve when it comes to
data-binding that usually goes in this order:

• primitives
• data-structures
• expressions

Binding to expressions is an incredibly powerful technique that opens the door
to some really interesting possibilities.

In this article, we are walking through an example where we are going to move
from simple data-binding to a fairly complex and interesting expression binding
example.

Disclaimer: Binding to expressions are really powerful but if not
used delicately, we’ll end up paying a performance cost. The ex-
ample, we’re talking a about a prototype-ready example that is not
appropriate with 1000s of items or logic-heavy expressions.

29

30 CHAPTER 7. THE POWER OF EXPRESSION BINDING

Simple Bindings

We are going to kick things off with a simple controller called StepOneController
that essentially has two properties and a method.
We will bind to $scope.categories array and then call setCurrentCategory
to update the currentCategory property from the view.

angular.module('myApp')
.controller('StepOneController', ['$scope', function ($scope) {
// Example categories
$scope.categories = [

{name: 'one', display: 'Category One'},
{name: 'two', display: 'Category Two'},
{name: 'three', display: 'Category Three'},
{name: 'four', display: 'Category Four'}

];

$scope.currentCategory = null;

$scope.setCurrentCategory = function (category) {
$scope.currentCategory = category;

};
}])

In the view, we are looping over the categories array with ng-repeat and
create a category-item div for each object in the categories array.
Within the div we are binding the display property on the category object.

<div class="container" ng-controller="StepOneController">
<h2>Step One</h2>
<div class="row">

<div class="col-xs-3 category-item"
ng-repeat="category in categories"
ng-click="setCurrentCategory(category)">
{{category.display}}

</div>
</div>
<h4>Active Category: {{currentCategory.display}}</h4>

</div>

When our user clicks on the category-item div, the ng-click directive calls
setCurrentCategory() with the category object along with it.
In the h4 tag below, we’re simply binding the currentCategory.display data
above as we would in simply data-binding.

31

A Basic Expression Binding

Albeit simple, the above example is impressive in its own right with how much
we can accomplish in a little amount of code with data-binding.

Now that the foundation has been laid and now we are going to extend it to
allow us to bind to an expression with Angular.

In the demo code, we have create second controller called StepTwoController
that is identical to StepOneController with an additional method
isCurrentCategory() that returns a boolean if the current category matches
the category argument.

angular.module('myApp')
.controller('StepTwoController', function ($scope) {
$scope.categories = [
{name: 'one', display: 'Category One'},
{name: 'two', display: 'Category Two'},
{name: 'three', display: 'Category Three'},
{name: 'four', display: 'Category Four'}

];

$scope.currentCategory = null;

$scope.setCurrentCategory = function (category) {
$scope.currentCategory = category;

};

$scope.isCurrentCategory = function (category) {
return $scope.currentCategory === category;

}
})

Generally speaking this about as complicated as we like bound ex-
pressions to be with simple evaluations that incur very little over-
head.

We are going to use this method to dynamically set a class on our
category-item div using the ng-class directive.

Using the ng-class directive, we’ll dynamically apply a class based upon the
result of an expression. In this case, we’re applying the current-active class to
the DOM element if the result of the isCurrentCategory() method is truthy:

<div class="container" ng-controller="StepTwoController">
<div class="col-xs-3 category-item"

32 CHAPTER 7. THE POWER OF EXPRESSION BINDING

ng-repeat="category in categories"
ng-click="setCurrentCategory(category)"
ng-class="{'current-active':isCurrentCategory(category)}">
{{category.display}}

</div>
</div>

In our CSS, the current-active class applies a 10 pixel border to the element
it is applied to. Practically speaking, when a user clicks a category, there will
be a grey border around it indicating that it is the active element.

.current-active {
border: 10px solid #666;

}

We have made just a few small additions to our code to dynamically update the
UI based on the value of a simple expression.

Expressions All The Way Down

The final example where we get into some really powerful stuff using expressions
within expressions.

We are going to dynamically set a dynamically-defined class based
on the value of a dynamically-defined variable.

The first thing we need to do to make this work is to create a class that corre-
sponds to each category object we have in our categories array.

The idea is that .current-one applies to the category that has the name one and
.current-two corresponds to the category that has the name two, etc.

.current-one {
border: 10px solid #457b97;

}

.current-two {
border: 10px solid #727372;

}

.current-three {
border: 10px solid #a66a48;

}

33

.current-four {
border: 10px solid #f60;

}

The only difference between these four classes is the color of the
border defined in the above CSS.

We have declared a StepThreeController that is the exact same as
StepTwoController and the HTML between the two examples are the same
except for one new addition of the class variable we are dynamically setting in
the view.

<div ng-controller='StepThreeController'>
<div
class="col-xs-3 category-item btn btn-primary"
ng-repeat="category in categories"
ng-click="setCurrentCategory(category)"
ng-class="
{'current-{{category.name}}':
isCurrentCategory(category)

}">
{{category.display}}

</div>
<div class="clear"></div>

</div>

This works is that Angular knows to evaluate the bindings before evaluating the
ng-class expression.

Binding to expressions is an incredibly powerful technique that allows you to
accomplish some pretty impressive things when done responsibly.

The code for this article is available here

http://d.pr/CIzF

34 CHAPTER 7. THE POWER OF EXPRESSION BINDING

Chapter 8

Optimizing Angular: the
view (part 1)

It’s incredibly easy for us to build prototypes of angular apps, but what about
when we head to production?

Will our app hold up? What about when we start dealing with large amounts
of data? How can we make sure our application is still performant?

In this part 1 of optimizing angular, we’ll walk through a few ways to optimize
our view and why they are important.

Limiting the filter

Filters are incredibly powerful ways to sort and manage our way through data
in the view. They can help us format data, live-search data, etc.

<table ng-controller="FilterController">
<thead>

<tr>
<th>Filter</th>
<th>Input</th>
<th>Output</th>

</tr>
</thead>
<tbody>

<tr>
<td>uppercase</td>
<td ng-non-bindable>{{ msg | uppercase }}</td>
<td>{{ msg | uppercase }}</td>

35

36 CHAPTER 8. OPTIMIZING ANGULAR: THE VIEW (PART 1)

</tr>
<tr>

<td>currency</td>
<td ng-non-bindable>{{ 123.45 | currency }}</td>
<td>{{ 123.45 | currency }}</td>

</tr>
<tr>

<td>date</td>
<td ng-non-bindable>{{ today | date:'longDate' }}</td>
<td>{{ today | date:'longDate' }}</td>

</tr>
<tr>

<td>custom pig-latin filter</td>
<td ng-non-bindable>{{ msg | piglatin }}</td>
<td>{{ msg | piglatin }}</td>

</tr>
</tbody>

</table>

The piglatin filter is a custom filter that looks like this:

angular.module('myApp')
.filter('piglatin', function() {

return function(text) {
text = text || '';
text = text
.replace(/\b([aeiou][a-z]*)\b/gi, "$1way");

text = text
.replace(/\b([bcdfghjklmnpqrstvwxy]+)([a-z]*)\b/gi, "$2$1ay");

return text;
}

});

(jsbin example)

Although this is really incredibly useful to be able to do when we’re prototyping,
it’s a cause for a lot of slow-down in the view. Every time that there is a $digest
event, these filters will run for every value. That’s exponentially worse when
we’re using ng-repeat and setting a filter on those values.

How do we get away with moving this functionality out of the view so it runs
once, rather than every single time? Use the controller!

We can change the view above to hand us the filtered value so we don’t need to
do any parsing in the view ourselves.

http://d.pr/ssYi

37

Using filters in the controller

To get access to a filter inside of a controller, we’ll need to inject it into the
controller. For instance:

angular.module('myApp')
.controller('HomeController', function($scope, $filter) {
// We now have access to the $filter service

});

With the $filter service, we can fetch the filter we’re interested in and apply
it to our data.

The date example from above is a good candidate to provide a formatted date
in the controller. We might hand back a formatted_date instead of using the
raw date in the view:

angular.module('myApp')
.controller('HomeController', function($scope, $filter) {
$scope.today = new Date();
var dateFilter = $filter('date');
$scope.formatted_today = dateFilter($scope.today, 'mediumDate');

})

Instead of showing the today scope property in our view, we can simply show
the formatted_today value and have the filter run in the background.

38 CHAPTER 8. OPTIMIZING ANGULAR: THE VIEW (PART 1)

Chapter 9

Optimizing Angular: the
view (part 2)

In this recipe, we’re going to continue optimizing the view with Angular.

It’s relatively well-known that the Angular event system can handle approxi-
mately 2000 watches on any given page for a desktop browser. Although this
number has been somewhat arbitrarily cited by the Angular team and others,
it holds true with our experience as well.

What’s a watch

Before we can talk about how to optimize the numbers of watches in the view,
it’s a good idea to define what we mean when we say watch.

Angular sets up these constructs called watches which monitor the changes to
interesting data in an angular application. This interesting data is specified
by our app by showing elements on-screen using directives or the $scope from
inside of a controller using the {{ }} template tags.

The following creates two watches, one for the input and one for the output:

<div>
Enter your name: <input type="text" ng-model="name" />
<h3>Hello {{ name }}</h3>

</div>

For instance, anytime that we set up a list that uses ng-repeat with a bunch
of components that may or may not change. If we set up a binding between the
front-end and the backend, we create at minimum 1 watch. If we loop over a

39

40 CHAPTER 9. OPTIMIZING ANGULAR: THE VIEW (PART 2)

list while we create that, that’s at least n watches. When we start setting up
multiple bindings for each iteration, that’s n*n watches.

Limiting the watches

There are a few strategies that we can take to limit the number of watches on
a page. For this snippet, we’ll talk about the bindonce library.

Whenever we’re using static information, information that we don’t expect to
change, it’s inefficient to keep a watcher around to watch data that will never
change.

For instance, when we get a list of our user’s Facebook friends we don’t expect
their names to change. We’ll look at this data as static information.

Rather than creating a watch for every one of our facebook friend’s names, we
can tell Angular to only create a single watch to watch the list of friends to
repeat over using the bindonce library.

This code creates a 3 watchers for every friend of ours. In a list of 20 friends,
that’s 60 watchers in this code alone:

<li ng-repeat="friend in friends">

<a ng-href="friend.link">
<h1 ng-bind="friend.name">
<h4 ng-bind="friend.birthday">
</h4>

Installation

To install the bindonce library, we can use bower to download it:

$ bower install angular-bindonce --save

Or we can grab it from the repo at https://github.com/Pasvaz/bindonce. Either
way, we’ll need to include the file in our HTML and reference it as a module in
our app’s dependency module array.

angular.module('app', [
'pasvaz.bindonce'

])

https://github.com/Pasvaz/bindonce

41

Using bindonce, we can tell angular to watch data while it’s unresolved and as
soon as it resolves we can set it to remove the watcher. The following code only
resolves 1 watcher for the entire loop:

<li bindonce
ng-repeat="friend in friends">
<a bo-href="friend.link">

<h1 bo-text="friend.name">
<h4 bo-text="friend.birthday">
</h4>

Use simple watches

Another approach to optimize the watches on our view is to keep them as simple
as possible. The $digest cycle will run watches at a minimum of 2 times per
cycle, so the simpler the $watch function is, the faster it will run.

For deeper look into other optimizations, check out the optimization chapter in
ng-book.com.

http://ng-book.com

42 CHAPTER 9. OPTIMIZING ANGULAR: THE VIEW (PART 2)

Chapter 10

Getting connected to data

Webapps are only as interesting as the functionality and data that they provide
us. Other than isolated apps such as calculators and solitaire games, data powers
most functionality.

In this snippet, we’re going to look at the Angular Way of connecting to data
sources. Specifically, we’re going to work with the flickr API to get public photos.
Let’s get started!

Naively getting data

Angular provides us the $http service by default. The $http service is an
interface to the native XMLHttpRequestObject provided by the browser that
works directly with our angular apps.

To use the $http object, we’ll first need to inject it into our angular objects,
like any other service we’ll want to use:

angular.module('myApp')
.controller('HomeController', function($scope, $http) {
// We now have access to the $http object

});

We’re going to use the $http object to fetch photos from the public flickr API:

<small>First random photo in the public data stream</small>
<div ng-controller="FlickrApiController">

<img ng-src="{{ photo.media.m }}"

alt="{{ photo.title }}" />

43

http://www.flickr.com/services/api/

44 CHAPTER 10. GETTING CONNECTED TO DATA

</div>

We are fetching this photo from the flickr API using the $http service in our
controller using:

angular.module('myApp')
.controller('FlickrApiController', function($scope, $http) {
$http({
method: 'JSONP',
url: 'http://api.flickr.com/services/feeds/photos_public.gne',
params: {
'format': 'json',
'jsoncallback': 'JSON_CALLBACK'

}
}).success(function(photos) {
$scope.photo = photos.items[0];

})
})

Now, although this works, it’s not the Angular Way of fetching photos. Using
the $http service in our controller makes it incredibly difficult to test controllers
and our functional logic for fetching from our external services.

The angular way

Rather than using our controllers to get our photo, we’ll create a service that
will house our flickr interactions.

A service is a singleton object that we can both bundle our common services
together as well as use to share data around our application. In this case, we’ll
create a Flickr service that bundles together our flickr functionality.

As the Flickr API requires an API key for any non-public requests, we’ll likely
want to create a provider as we’ll want to configure our api key on a per-app
basis.

angular.module('adventApp')
.provider('Flickr', function() {

var base = 'http://api.flickr.com/services',
api_key = '';

// Set our API key from the .config section
// of our app
this.setApiKey = function(key) {

45

api_key = key || api_key;
}

// Service interface
this.$get = function($http) {

var service = {
// Define our service API here

};

return service;
}

})

This gives us the ability to set our api_key from Flickr in our .config() func-
tion on our app so we can use it later in our calls to the flickr api:

angular.module('myApp')
.config(function(FlickrProvider) {
FlickrProvider.setApiKey('xxxxxxxxxxxxxxxxxxxxxxx')

})

Instead of using the $http service in our controller, we can take the entire
functionality from above and copy+paste it into our service and return the
promise.

// ...
// Service interface
this.$get = function($http) {

var service = {
// Define our service API here
getPublicFeed: function() {

return $http({
method: 'JSONP',
url: base + '/feeds/photos_public.gne?format=json',
params: {
'api_key': api_key,
'jsoncallback': 'JSON_CALLBACK'

}
});

}
};

return service;
}
// ...

46 CHAPTER 10. GETTING CONNECTED TO DATA

Our Flickr service now has a single method: getPublicFeed() that we can
use in our controller. This changes our entire call to the flickr api to look like:

angular.module('myApp')
.controller('FlickrApiController', function($scope, Flickr) {
Flickr.getPublicFeed()
.then(function(data) {
$scope.newPhoto = data.data.items[0];

});
})

One final component that we like to change here is how the data.data.items[0]
looks in the usage of our getPublicFeed() function. This is particularly un-
appealing and requires users of our service to know exactly what’s going on
behind the scenes.

We like to clean this up in our service by creating a custom promise instead of
returning back the $http promise. To do that, we’ll use the $q service directly
to create a promise and resolve that directly. We’ll change our getPublicFeed()
api method to look like:

// ...
this.$get = function($q, $http) {

var service = {
getPublicFeed: function() {

var d = $q.defer();
$http({
method: 'JSONP',
url: base + '/feeds/photos_public.gne?format=json',
params: {
'api_key': api_key,
'jsoncallback': 'JSON_CALLBACK'

}
}).success(function(data) {
d.resolve(data);

}).error(function(reason) {
d.reject(reason);

})
return d.promise;

}
};

return service;
}
// ...

47

Now we can call the getPublicFeed() without needing to use the extra .data:

Flickr.getPublicFeed()
.then(function(photos) {
$scope.newPhoto = photos.items[0];

});

The full source of this example can be found on jsbin.

http://d.pr/P8F1

48 CHAPTER 10. GETTING CONNECTED TO DATA

Chapter 11

Real-time Presence Made
Easy with AngularJS and
Firebase

It is mind-boggling what can be accomplished these days within a modern web
stack. Looking back only a few years ago, implementing a real-time tracker for
counting the number of users on our pages in less than 50 lines of code seemed
impossible. Today, we can easily do this in a matter of minutes in only a few
lines of code.
In this snippet, we are going to build this real-time presence system using
AngularJS and Firebase and we’ll do it in only a matter of minutes. Let’s buckle
up and get started!

Step One: Create a Firebase

The first thing we need to do is go to Firebase and create a free account or login
if we already have an account. Head to firebase.com

Once logged in, we can head to account overview and create a Firebase. Here,
we’ll create a unique name that’s associated with our account and click create.
The name that we create our Firebase with indicates how we will fetch it later.
For instance, if we named it ng-advent-realtime, then the URL to retrieve

49

http://firebase.com

50CHAPTER 11. REAL-TIME PRESENCE MADE EASY WITH ANGULARJS AND FIREBASE

it from is https://ng-advent-realtime.firebaseio.com/. We’ll hold on to
this for a minute…

Step Two: Setting up our app

Now that we have a Firebase set up, we need need to add the Firebase library
to our project.

We just need to add the script tag below to our index.html page.

<script src="https://cdn.firebase.com/v0/firebase.js"></script>
<script
src='https://cdn.firebase.com/libs/angularfire/0.6.0/angularfire.min.js'>

</script>

We are also kicking things off by bootstrapping our Angular app that we’ll name
myRealtimeAdvent by setting the ng-app directive in our DOM:

<html ng-app="myRealtimeAdvent">

We’ll also set the MainController (that we’ll create shortly) to drive the view:

<body ng-controller="MainController">

Now, in the script.js file, we’ll create the barebone version of our app, so that
our index.html page can actually load:

angular.module('myRealtimeAdvent', [])
.factory('PresenceService', function() {
// Define our presence service here

})
.controller('MainController', ['$scope',

function($scope, PresenceService) {
// Controller goes here

}
])

Now we have an AngularJS application that has real-time Firebase capabilities
waiting in the wings to be utilized.

51

Step Three: The Real-time Service Minus Real-time

We want to isolate the real-time presence functionality into its own service and
so we are going to create the PresenceService for the rest of the application
to use as we did above.
For the time being, we are going to declare the PresenceService and give it
just enough functionality to have the appearance of being useful.
We have created a property onlineUsers and we are exposing this property via
the getOnlineUserCount() method.

app.factory('PresenceService', ['$rootScope',
function($rootScope) {

var onlineUsers = 0;

var getOnlineUserCount = function() {
return onlineUsers;

}

return {
getOnlineUserCount: getOnlineUserCount

}
}

]);

The PresenceService API has only the one method of getOnlineUserCount(),
but that’s all we’ll need for now.

Step Four: A Real Real-time Service

We are going to be doing three distinct things with our Firebase and they are
as follows:

1. Create a main Firebase reference keeps track of how many connected users
are on the page. We are also going to create a child Firebase reference
that uniquely identifies us as a user.

2. Create a presence reference that points to a special Firebase location (at
.info/connected) that monitors a client connection state. We will use this
reference to modify the state of our other references which will propagate
to all of the connected clients.

3. Listen to the main Firebase reference for changes in the user count so that
we can update the rest of the AngularJS application.

We are not going to delve into every part of the Firebase API as it
exists in this code but we strongly encourage checking out the docs
for further reading.

https://www.firebase.com/docs/javascript/firebase/index.html

52CHAPTER 11. REAL-TIME PRESENCE MADE EASY WITH ANGULARJS AND FIREBASE

Create Our References

Create a Firebase reference is a matter of creating a new Firebase object and
sending in the location that you want to target.

We are creating a variable we’ll call listRef that will serve as our main Firebase
reference. We will also creating child reference called userRef that we will use
to uniquely identify each user.

Additionally, we will create a presenceRef that will handle all the legwork for
letting Firebase know when users come and go:

var baseUrl = 'https://ng-advent-realtime.firebaseio.com'
var listRef = new Firebase(baseUrl + '/presence/');
// This creates a unique reference for each user
var userRef = listRef.push();
var presenceRef = new Firebase(baseUrl + '/.info/connected');

Announcing new users

Once the presenceRef is connected, we set the userRef to true on the page
to add ourselves to the listRef.

We will also tell Firebase to remove us when we disconnect using the function
on UserRef userRef.onDisconnect().remove():

// Add ourselves to presence list when online.
presenceRef.on('value', function(snap) {

if (snap.val()) {
userRef.set(true);
// Remove ourselves when we disconnect.
userRef.onDisconnect().remove();

}
});

Announce Everyone Else

Now that we have added ourselves to the list, we need to listen for when other
users are added to the same location.

We can do this by listening for the value and then updating onlineUsers
to snap.numChildren and then broadcasting an onOnlineUser event to all
interested parties.

// Get the user count and notify the application
listRef.on('value', function(snap) {

53

onlineUsers = snap.numChildren();
$rootScope.$broadcast('onOnlineUser');

});

The complete PresenceService looks like:

.factory('PresenceService', ['$rootScope',
function($rootScope) {

var onlineUsers = 0;

// Create our references
var baseUrl = 'https://ng-advent-realtime.firebaseio.com'
var listRef = new Firebase(baseUrl + '/presence/');
// This creates a unique reference for each user
var userRef = listRef.push();
var presenceRef = new Firebase(baseUrl + '/.info/connected');

// Add ourselves to presence list when online.
presenceRef.on('value', function(snap) {

if (snap.val()) {
userRef.set(true);
// Remove ourselves when we disconnect.
userRef.onDisconnect().remove();

}
});

// Get the user count and notify the application
listRef.on('value', function(snap) {
onlineUsers = snap.numChildren();
$rootScope.$broadcast('onOnlineUser');

});

var getOnlineUserCount = function() {
return onlineUsers;

}

return {
getOnlineUserCount: getOnlineUserCount

}
}

]);

Our new PresenceService is complete and ready to be used within our appli-
cation.

54CHAPTER 11. REAL-TIME PRESENCE MADE EASY WITH ANGULARJS AND FIREBASE

Step Four: It’s Alive!

And at this point, it we can simply listen for the onOnlineUser event on $scope
and update $scope.totalViewers to the value returned by the function on the
PresenceService called: PresenceService.getOnlineUserCount().

.controller('MainController', ['$scope', 'PresenceService',
function($scope, PresenceService) {
$scope.totalViewers = 0;

$scope.$on('onOnlineUser', function() {
$scope.$apply(function() {
$scope.totalViewers =
PresenceService.getOnlineUserCount();

});
});

}
])

It is important to point out that because onOnlineUser is being broadcasted
as a result of an event outside of the AngularJS universe, we need to use
$scope.$apply to kick of a digest cycle within the MainController otherwise
we won’t see any updates in our app.

Pro Tip: If you are binding to something that is not updating, it
is possible that AngularJS is not able to detect that the value has
changed. The first thing that we do is wrap the expression in ques-
tion in an $apply method call. It’s also preferable to use the built-in
AngularJS services where possible i.e. $timeout vs timeout.

And now we can bind to totalViewers in our HTML and complete the circuit.

<h1>{{totalViewers}} viewers are viewing</h1>

The entire code for this article is available here.

This article was written by Lukas Ruebbelke and Ari Lerner.

http://d.pr/lTTP
http://onehungrymind.com/
http://ng-newsletter.com

Chapter 12

Pushy Angular

Real-time with Angular is a topic that’s growing to be an increasingly important
in today’s fast-moving pace. We have already looked at how to handle real-time
presence with Firebase.
Pusher is especially good for generating real-time data that don’t necessarily
need custom storage. In this snippet, we’re going to build a small dashboard
for a server running a tiny stats collection process that runs every 10 seconds.

Get pushy

In order to work with the Pusher service, we’ll need to sign up for it (obviously).
Head to Pusher and sign up for the service. We’ll be working with the free
account.
Once we’ve signed up, we’ll need to include loading the library in our HTML.
Now, we can do this in the usual way by placing a script tag on the page:

<script src="http://js.pusher.com/2.1/pusher.min.js"
type="text/javascript"></script>

Or we can create a provider to load the library for us. This has many advantages,
the most of which is that it allows us to use Angular’s dependency injection with
externally loaded scripts.
Although we won’t walk through the source here line-by-line, we’ve included
comments at the relevant parts. The following snippet is simply dynamically
loading the library on the page for us.

angular.module('alPusher', [])
.provider('PusherService', function() {

55

http://pusher.com

56 CHAPTER 12. PUSHY ANGULAR

var _scriptUrl = '//js.pusher.com/2.1/pusher.min.js'
, _scriptId = 'pusher-sdk'
, _token = ''
, _initOptions = {};

this.setOptions = function(opts) {
_initOptions = opts || _initOptions;
return this;

}

this.setToken = function(token) {
_token = token || _token;
return this;

}

// Create a script tag with moment as the source
// and call our onScriptLoad callback when it
// has been loaded
function createScript($document, callback, success) {

var scriptTag = $document.createElement('script');
scriptTag.type = 'text/javascript';
scriptTag.async = true;
scriptTag.id = _scriptId;
scriptTag.src = _scriptUrl;
scriptTag.onreadystatechange = function () {

if (this.readyState == 'complete') {
callback();

}
}
// Set the callback to be run
// after the scriptTag has loaded
scriptTag.onload = callback;
// Attach the script tag to the document body
var s = $document
.getElementsByTagName('body')[0];

s.appendChild(scriptTag);
}

// Define the service part of our provider
this.$get = ['$document', '$timeout', '$q', '$rootScope', '$window',

function($document, $timeout, $q, $rootScope, $window) {
var deferred = $q.defer(),

socket,
_pusher;

function onSuccess() {

57

// Executed when the SDK is loaded
_pusher = new $window.Pusher(_token, _initOptions);
}

// Load client in the browser
// which will get called after the script
// tag has been loaded

var onScriptLoad = function(callback) {
onSuccess();
$timeout(function() {
// Resolve the deferred promise
// as the FB object on the window
deferred.resolve(_pusher);

});
};

// Kick it off and get Pushing
createScript($document[0], onScriptLoad);
return deferred.promise;
}]

})

This is our preferred method of injecting external libraries as it also
makes it incredibly simple to test our external library interactions.

With the PusherService above, we can create a secondary service that will
actually handle subscribing to the Pusher events.

We’ll create a single method API for the Pusher service that will subscribe us
to the Pusher channel.

angular.module('myApp', ['alPusher'])
.factory('Pusher', function($rootScope, PusherService) {

return {
subscribe: function(channel, eventName, cb) {
PusherService.then(function(pusher) {
pusher.subscribe(channel)
.bind(eventName, function(data) {

if (cb) cb(data);
$rootScope
.$broadcast(channel + ':' + eventName, data);

$rootScope.$digest();
})

})
}

58 CHAPTER 12. PUSHY ANGULAR

}
})

This Pusher service allows us to subscribe to a channel and listen for an event.
When it receives one, it will $broadcast the event from the $rootScope. If we
pass in a callback function, then we’ll run the callback function.

For example:

Pusher.subscribe('stats', 'stats', function(data) {
// from the stats channel with a stats event

});

Triggering events

Although it is possible to trigger events from the client, pusher discourages this
usage as it’s insecure and we must be careful to accept all events as client-side
events cannot always be trusted. To allow the client application to trigger events,
make sure to enable it in the applications settings in the browser.

We can then create a trigger function in our factory above:

angular.module('myApp', ['alPusher'])
.factory('Pusher', function($rootScope, PusherService) {

return {
trigger: function(channel, eventName, data) {
channel.trigger(eventName, data);

}
}

})

Tracking nodes

We’ll need to keep track of different nodes with our dashboard. Since we’re
good angular developers and we write tests, we’ll store our nodes and their
active details in a factory.

There is nothing magical about the NodeFactory and it’s pretty simple. It’s
entire responsibility is to hold on to a list of nodes and their current stats:

angular.module('myApp')
.factory('NodeFactory', function($rootScope) {

var service = {
// Keep track of the current nodes

59

nodes: {},
// Add a node with some default data
// in it if it needs to be added
addNode: function(node) {

if (!service.nodes[node]) {
service.nodes[node] = {
load5: 0,
freemem: 0

};
// Broadcast the node:added event
$rootScope.$broadcast('node:added');

}
},
// Add a stat for a specific node
// on a specific stat
addStat: function(node, statName, stat) {
service.addNode(node);
service.nodes[node][statName] = stat;

}
}
return service;

})

Tracking

We’re almost ready to track our server stats now. All we have left to do is
configure our Pusher service with our API key and set up our controller to
manage the stats.

We need to configure the PusherService in our .config() function, like nor-
mal:

angular.module('myApp')
.config(function(PusherServiceProvider) {
PusherServiceProvider
.setToken('xxxxxxxxxxxxxxxxxxxx')
.setOptions({});

})

Now we can simply use our Pusher factory to keep real-time track of our nodes.
We’ll create a StatsController to keep track of the current stats:

angular.module('myApp')
.controller('StatsController', function($scope, Pusher, NodeFactory) {
Pusher.subscribe('stats', 'stats', function(data) {

60 CHAPTER 12. PUSHY ANGULAR

NodeFactory.addStat(data.node, 'load5', data.load5);
NodeFactory.addStat(data.node, 'freemem', data.precentfreemem);

});
$scope.$on('node:added', function() {
$scope.nodes = NodeFactory.nodes;

});
});

Lastly, our HTML is going to be pretty simple. The only tricky part is looping
over the current nodes as we iterate over the collection. Angular makes this
pretty easy with the ng-repeat directive:

<table>
<tr ng-repeat="(name, stats) in nodes track by $id(name)">

<td>{{ name }}</td>
<td>{{ stats.load5 }}</td>
<td>{{ stats.freemem }}</td>

</tr>
</table>

The source for this recipe can be found on jsbin.

http://d.pr/6tbA

Chapter 13

AngularJS SEO, mistakes
to avoid.

Google does not run (most) JavaScript when it crawls the web, so it can’t index
our fat JavaScript client websites, including AngularJS pages.

We can have a headless browser – like PhantomJS – open our pages, run the
JavaScript, and save the loaded DOM as an HTML snapshot.

When the Googlebot visits your site, we can serve them that snapshot instead
of our normal page so that Google will see the rendered page same thing your
users see without needing to run any JavaScript.

Read our post for more detailed explanation of this process.

However, a naive implementation of this solution isn’t good enough for most
sites.

In this recipe, we’re going to look at a few key things to watch out for.

Caching snapshots

First and foremost, we’ll need to cache our snapshots in advance. If we open and
run our pages in a headless browser as Googlebot requests them, we’re going
going to see a ton of drag in our requests and the number of problems we’re
opening ourselves up for is going to cause us lots issues.

At best, it will make our site appear really slow to Google, hurting our rankings.
More likely, Google will request a ton of pages at once and our webserver won’t
be able to launch headless browsers fast enough to keep up them. When Google
comes calling, we definitely don’t want to respond with 500 errors.

61

http://phantomjs.org/
http://www.ng-newsletter.com/posts/serious-angular-seo.html

62 CHAPTER 13. ANGULARJS SEO, MISTAKES TO AVOID.

Now that we have a cache, we’ll want to need a way to keep it up to date. When
the content on a page changes, we’ll need to design a way for our system to know
how to update the snapshot in the cache. The specific implementation depends
heavily on our architecture and business needs, but it is a question that we’ll
need to answer.

Do we want to make it time-based? Do we want to manually clear the cache?
How do we know what needs to be cleared?

Also, what happens when we make a site wide change to our site? We’ll need
to be able to regenerate our entire cache. This can take a long time, depending
upon how many pages our app is, how long our system will take to generate
snapshots, etc. When we’re adding a few new pages to the cache everyday, this
might not take that much power, but when we’re regenerating everything, this
process can take a LONG time. It can also introduce the complexities of scaling
past a single machine.

Remove JavaScript from snapshots

Google does execute some JavaScript. Sometimes things like javascript redirects
or javascript content clearing can have unexpected results when left in the snap-
shot. Since our HTML snapshot already contains exactly what we want Google
to see, we don’t need to leave any javascript in the page to potentially cause
problems for the search engine bot.

Design to fail

It’s important that we are ready for crashes in our system. PhantomJS is great,
but it has a habit of just crashing anytime it gets confused. Our solution needs to
handle this gracefully, restarting PhantomJS as needed and reporting problems
so we can track them down later. By designing a system that we expect to fail,
we can start from the get-go to build a system designed for stability.

Special characters!!!!

Special characters are the bane of web programming and working with your
headless browser is no exception. If we have any urls with characters that have
to be encoded (with those ugly percent signs), we’ll need to set up a test suite
against them such that the routes actually resolve. It’s important that we test
any two byte characters, spaces, or percent signs.

Finally, if we don’t want to have to deal with all of these issues ourselves, then
Brombone might be a good option to check out. Reminder, they are offering
calendar readers 25% off a year of SEO services. We can focus on our core
products and leave the SEO hoola-hooping to them.

63

For our in-depth post on Angular SEO, head to What you need to
know about Angular SEO

http://www.ng-newsletter.com/posts/serious-angular-seo.html
http://www.ng-newsletter.com/posts/serious-angular-seo.html

64 CHAPTER 13. ANGULARJS SEO, MISTAKES TO AVOID.

Chapter 14

AngularJS with ngAnimate

AngularJS 1.2 comes jam packed with animation support for common ng direc-
tives via ngAnimate module.

To enable animations within our application, we’ll need to link the angular-
animate.js JavaScript file and include ngAnimate as a dependency within
our application. The angular-animate.js file can be downloaded from the angu-
larjs.org homepage or from the code.angularjs.org CDN.

It is best to stick to using AngularJS 1.2.4 or higher to make
use of the best animation features.

What directives support animations?

The following directives are “animation aware” in AngularJS 1.2:

• ngRepeat (enter, leave and move animations)
• ngInclude (enter and leave animations)
• ngView (enter and leave animations)
• ngIf (enter and leave animations)
• ngSwitch (enter and leave animations)
• ngClass (addClass and removeClass animations)
• ngShow and ngHide (addClass and removeClass animations for

.ng-hide).

We can also use animations within our own directives by using the $animate
service within our link functions.

65

http://www.angularjs.org
http://www.angularjs.org
http://code.angularjs.org

66 CHAPTER 14. ANGULARJS WITH NGANIMATE

What’s nice about ngAnimate is that is fully isolates animations from our direc-
tive and controller code. Animations can be easily reused across other applica-
tions by just including the CSS and/or JS animation code.

CSS3 Transitions & Keyframe Animations

ngAnimate supports native CSS3 transitions and keyframe animations right out
of the box. With AngularJS 1.2, all we need to do is create a few compound
CSS classes in our CSS code which are tied to a single base CSS class and then
reference that CSS class inside of our HTML template code.

The steps we recommend are:

• think of an animation name (something like “slide”)
• make a CSS class from that (something like “.slide-animation”)
• setup the styles for each of the events that we wish to animate (ngIn-

clude for example will contain enter and leave events, therefore we’ll
need to provide animation styles for the .slide-animation.ng-enter
and .slide-animation.ng-leave CSS classes)

Pretty simple!

Transitions

ngAnimate works very nicely with CSS3 Transitions. All we need to do is provide
starting and ending CSS classes. The starting CSS class (known as the setup
class) is where we place the starting CSS styles that we wish to have when the
animation starts. The ending CSS class (known as the active class) is where
we’ll place the styles that we expect our animation to animate towards.

For the example below, let’s setup animations with ngRepeat.

Click here to view this demo live!

What does our code look like?

<input placeholder="Filter Repeat Items..." ng-model="f" />
<div ng-repeat="item in items | filter:f" class="repeat-animation">
{{ item }}

</div>

/*
* ngRepeat triggers three animation events: enter, leave and move.

http://d.pr/NuGw

CSS3 TRANSITIONS & KEYFRAME ANIMATIONS 67

*/
.repeat-animation.ng-enter,
.repeat-animation.ng-leave,
.repeat-animation.ng-move {

-webkit-transition:0.5s linear all;
transition:0.5s linear all;

}

/* ending enter and move styling
(this is what the element will animate from */

.repeat-animation.ng-enter,

.repeat-animation.ng-move { opacity:0; }

/* ending enter and move styling
(this is what the element will animate towards */

.repeat-animation.ng-enter.ng-enter-active,

.repeat-animation.ng-move.ng-move-active { opacity:1; }

/* starting leave animation */
.repeat-animation.ng-leave { opacity:1; }

/* ending leave animation */
.repeat-animation.ng-leave.ng-leave-active { opacity:0; }

(click here to and or edit the demo code in a live editor on plnkr.co).

Keyframe Animations

Keyframe animations triggered by ngAnimate work just about the same as with
transitions, however, only the setup class is used. To make this work, we’ll
just reference the keyframe animation in our starting CSS class (the setup class).

For the example below, let’s setup animations with ngView.

Click here to view this demo live!

What does our code look like?

<div class="view-container">
<div ng-view class="view-animation"></div>

</div>

/*
* ngView triggers three animation events: enter, leave and move.
*/

http://d.pr/w9Mp
http://d.pr/xsCt

68 CHAPTER 14. ANGULARJS WITH NGANIMATE

.view-container {
height:500px;
position:relative;

}

.view-animation.ng-enter {
-webkit-animation: enter_animation 1s;
animation: enter_animation 1s;

/*
* ng-animate has a slight starting delay for optimization purposes
* so if we see a flicker effect then we'll need to put some extra
* styles to "shim" the animation.
*/

left:100%;
}

.view-animation.ng-leave {
-webkit-animation: leave_animation 1s;
animation: leave_animation 1s;

}

.view-animation.ng-leave,

.view-animation.ng-enter {
position:absolute;
top:0;
width:100%;

}

/*
* the animation below will move enter in the view from
* the right side of the screen
* and move the current (expired) view from the center
* of the screen to the left edge
*/
@keyframes enter_animation {

from { left:100%; }
to { left:0; }

}

@-webkit-keyframes enter_animation {
from { left:100%; }
to { left:0; }

}

@keyframes leave_animation {

JAVASCRIPT ANIMATIONS 69

from { left:0; }
to { left:-100%; }

}

@-webkit-keyframes leave_animation {
from { left:0; }
to { left:-100%; }

}

(click here to and or edit the demo code in a live editor on plnkr.co).
Both CSS3 Transitions and Keyframe Animations with ngAnimate are automat-
ically canceled and cleaned up if a new animation commences when an existing
animation is midway in its own animation.

JavaScript Animations

JavaScript animations are also supported and they also work by referencing a
CSS class within the HTML template.
To define our own JS animations, just use the .animation() factory method
within our ngModule code.
For the example below, let’s setup animations with ngShow using the amazing
animation library http://www.greensock.com/.
Click here to view this demo live!

What does our code look like?

//be sure to link jquery and greensock.js to our application
<script
src="//ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js">

</script>
<script
src="http://cdnjs.cloudflare.com/ajax/libs/gsap/1.11.2/TweenMax.min.js">

</script>

//and here's our ng-show animation
<button ng-click="showMe = !showMe">Toggle Show Hide</button>
<div class="big-box show-hide-animation" ng-show="showMe">
I am visible

</div>

var myModule = angular.module('myApp', ['ngAnimate'])

http://d.pr/Yx1c
greensock.js
http://d.pr/pfpc

70 CHAPTER 14. ANGULARJS WITH NGANIMATE

myModule.animation('.show-hide-animation', function() {
/*
* the reason why we're using beforeAddClass and
* removeClass is because we're working
* around the .ng-hide class (which is added when ng-show
* evaluates to false). The
* .ng-hide class sets display:none!important and we want
* to apply the animation only
* when the class is removed (removeClass) or before
* it's added (beforeAddClass).
*/

return {

/*
* make sure to call the done() function when the animation is complete.
*/
beforeAddClass : function(element, className, done) {

if(className == 'ng-hide') {
TweenMax.to(element, 1, { height: 0, onComplete: done });

//this function is called when the animation ends or is cancelled
return function() {
//remove the style so that the CSS inheritance kicks in
element[0].style.height = '';

}
} else {
done();

}
},

/*
* make sure to call the done() function when the animation is complete.
*/
removeClass : function(element, className, done) {

if(className == 'ng-hide') {
//set the height back to zero to make the animation work properly
var height = element.height();
element.css('height', 0);

TweenMax.to(element, 1, { height: height, onComplete: done });

//this function is called when the animation ends or is cancelled
return function() {
//remove the style so that the CSS inheritance kicks in
element[0].style.height = '';

}

TRIGGERING ANIMATIONS INSIDE OF OUR OWN DIRECTIVES 71

} else {
done();

}
}

}
});

(click here to and or edit the demo code in a live editor on plnkr.co).

In addition to beforeAddClass and removeClass, we can also use
beforeRemoveClass and addClass as well. For structural animations,
such as ngRepeat, ngView, ngIf, ngSwitch or ngInclude use, we can use enter,
leave and move.

It’s up to us to determine how to perform animations within JS animations.
Just be sure to call done() to close off the animation (even if we’re skipping
an animation based on the className … Otherwise the animation would never
close).

Triggering Animations inside of our own Direc-
tives

We can easily trigger animations within our own directives by calling the ani-
mation member functions on the $animate service.

For the example below, let’s setup animations to trigger based of a click event.

Click here to view this demo live!

What does our code look like?

myModule.directive('expandingZone', ['$animate', function($animate) {
return function(scope, element, attrs) {

var clickClassName = 'on';
element.on('click', function(event) {
event.preventDefault();
element.hasClass(clickClassName) ?
$animate.removeClass(element, clickClassName) :
$animate.addClass(element, clickClassName);

});
};

}]);

And our HTML code looks like so:

http://d.pr/Ljjq
http://d.pr/SHQW

72 CHAPTER 14. ANGULARJS WITH NGANIMATE

<div expanding-zone class="horizontal-animation">Click me!</div>

Our CSS3 Transition code can be created easily by referencing the
.horizontal-animation CSS class. Notice that our CSS code below
can work even without ngAnimate being included since it follows a traditional
CSS class transition. The animation will snap back and forth when the .on
class is added or removed.

.horizontal-animation {
-webkit-transition: 0.5s linear all;
transition: 0.5s linear all;
width:100px;

}
.horizontal-animation.on {

width:500px;
}

(click here to and or edit the demo code in a live editor on plnkr.co).

Learn more! Become a Pro

To fully master ngAnimate and to learn more tricks with other libraries, be sure
to visit www.yearofmoo.com. Yearofmoo is a popular programming blog which
has a ton of useful AngularJS material ranging from animation to testing to
SEO.

For more information, check out http://www.yearofmoo.com and ng-
newsletter’s animation post.

This article was written by Matias Niemelä (aka @yearofmoo) of www.yearofmoo.com
and edited by Ari Lerner (aka @auser).

http://d.pr/jXct
http://www.yearofmoo.com
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html
http://www.ng-newsletter.com/posts/angular-animation.html
http://www.ng-newsletter.com/posts/angular-animation.html
http://www.yearofmoo.com

Chapter 15

HTML5 api: geolocation

With Angular, it’s trivial to use HTML5 APIS given to us by the browser. In
this snippet, we’re going to walk through how to get a popular one from the
browser: the geolocation.
When using an HTML5 API, we’ll always need to handle the case when someone
is visiting our page from a non-html browser that doesn’t implement the same
HTML5 apis. We’ll deal with this shortly. First, let’s look look at how to grab
the geolocation on an HTML5 compliant browser (if you’re not, you should be
using Chrome to visit this page for the best experience).

Are we compatible?

In order to determine if a browser has the ability to fetch a geolocation, we’ll
need to test for the existence of the geolocation object on the navigator object
on the window global object:

if (window.navigator && window.navigator.geolocation) {
// Awesome, HTML5 geolocation is supported

} else {
// HTML5 geolocation is not supported for this browser yet

}

With this simple check, we’re ready to get the geolocation for our browser. The
geolocation.getCurrentPosition() method takes a single argument: a callback
function to run with the position. Because the getCurrentPosition() is asyn-
chronous, we have to pass in a callback function to actually fetch the position.

window.navigator.geolocation.getCurrentPosition(function(position) {
// position is a JSON object that holds the lat and long

73

74 CHAPTER 15. HTML5 API: GEOLOCATION

// if the call to getCurrentPosition() is successful.
});

We can wrap this into a controller function, like so such that we can attach the
results to the view (as we’ve done in the example below):

$scope.getLocation = function() {
$window.navigator.geolocation.getCurrentPosition(function(pos) {
$scope.pos = pos;
$scope.$digest();

});
}

We can use this like so:

<div ng-controller='GeoLocationController'>
<div ng-if="geoSupport()">

<a ng-click="getLocation()" class="btn btn-primary">Get location

</div>
<div ng-if="!geoSupport()"></div>

</div>

Note that we had to use $scope.$digest() or $scope.$apply().
Due to the fact that the getCurrentPosition() function is asyn-
chronous and outside of the scope of our angular app, we’ll need to
let our app know that something changed and we’ll have to invoke
a digest loop. We use $digest() above because we don’t need to
trigger a full digest loop, just one on the current scope.

Handling errors

Sometimes the geolocation api does not come back successfully. It may be that
the user chose not to allow our app access to their geolocation or that perhaps the
GPS unit did not return in time. We need to be able to handle these failures as
they will happen. In order to handle them, the getCurrentPosition() allows
us to pass a second error handling function that will be called with the error:

$scope.getLocation = function() {
$window.navigator.geolocation.getCurrentPosition(function(pos) {
$scope.pos = pos;
$scope.$digest();

}, function(err) {

75

// An error has occurred with an error code
// If the err.code is:
// * 0 - the error is unknown
// * 1 - permission was denied to the location api
// * 2 - position is not available
// * 3 - timeout

});
}

Tracking location

With the getCurrentPosition() function, it will only ever get executed once.
If we want to continuously track the user’s position, we’ll need to use a different
function on the geolocation object: watchPosition(). The watchPosition()
method will call the callback function anytime the position changes.

$scope.watchPosition = function(cb) {
$window.navigator.geolocation.watchPosition(cb);

}
$scope.positionChanged = function(pos) {
console.log("called positionChanged");
$scope.$digest();

}

Where we called the watchPosition()method with the positionChanged func-
tion defined on our scope like:

<a ng-click="watchPosition(positionChanged)">Watch position

The Angular way

Okay, this is all well and great, but it’s not very angular. Instead of placing all of
our functions on top of our $scope, it’s better to nest them on a service that can
be called from the $scope. We can basically copy and paste the code we already
have written above into our new service with only a few minor modifications
to account for using promises and events to communicate state. We’ll include
comments inline to explain the code:

.factory('Geolocation', function($q, $window, $rootScope) {
// Default to false
var geoCapable = false;
// Set geoCapable to true if geolocation is supported
if ($window.navigator && $window.navigator.geolocation) geoCapable = true;

76 CHAPTER 15. HTML5 API: GEOLOCATION

// If we're not geoCapable, send a message to the rest of
// the angular app so we can catch it from the rest of
// the application.
if (!geoCapable) {
$rootScope.broadcast('geo:error', 'geolocation not supported');

}
var service = {
// Building our service API with the two functions:
// * getPosition()
// * watchPosition()
getPosition: function() {
// We'll return a promise for this function
var d = $q.defer();
// if we're not able to handle geolocation, immediately
// reject the promise and return
if (!geoCapable) return d.reject();
// Call the getCurrentPosition function on the
// geolocation object
$window.navigator.geolocation.getCurrentPosition(function(pos) {
// Resolve the promise as we did above
d.resolve(pos);
$rootScope.$apply();

}, function(err) {
// If there was an error, send an event back to the
// rest of the app and reject the promise
$rootScope.$broadcast('geo:error', err);
d.reject(pos);
$rootScope.$apply();

})
// return the promise
return d.promise;

},
watchPosition: function(cb) {
// First, if we aren't geoCapable then immediately return
// and potentially call a potential callback if it's given
if (!geoCapable) {
$rootScope.$broadcast('geo:error', 'Geo not supported');
if (cb) cb('Geo not supported');
return;

}
// Call the watchPosition() function on the geolocation
$window.navigator.geolocation.watchPosition(function(pos) {
// Anytime the position changes, invoke an event so
// we can use the event to communicate across the app.
$rootScope.$broadcast('geo:positionChanged', pos);

77

// If a callback is given, then run the callback
if (cb) {
cb(null, pos);
$rootScope.$apply();

}
});

}
}

return service;
})

We can use this factory by calling the API on our scope. Notice that we provide
multiple ways to use the results on our scope. This way we can pass in a function
OR we can simply listen for events on our scopes.

angular.module('myApp')
.controller('GeoController', function($scope, Geolocation) {
$scope.getPosition = function() {
Geolocation.getPosition()
.then(function(pos) {
$scope.position = pos;

})
}

});

78 CHAPTER 15. HTML5 API: GEOLOCATION

Chapter 16

HTML5 api: camera

In the previous recipe, we looked at how to grab the geolocation using the
HTML5 geolocation API. In this snippet, we’re going to check out how to grab
camera controls through the HTML5 api with Angular.

There is quite a lot of history surrounding the camera API. Although we won’t
go through it here as it’s outside of the scope of this snippet, but it’s important
to note that because of the not-yet-solidified camera API and we’ll need to work
around it. We’ll also then dive head-first into using it with Angular. Let’s get
started.

Are we compatible?

In order to check if our user’s browser implements the camera API we’ll need to
check to see if it implements any of the known camera API functions. We can
iterate through all of the different options and check if the browser implements
them.

var getUserMedia = function() {
if (navigator.getUserMedia) return navigator.getUserMedia;
else if (navigator.webkitGetUserMedia) return navigator.webkitGetUserMedia;
else if (navigator.mozGetUserMedia) return navigator.mozGetUserMedia;
else if (navigator.msGetUserMedia) return navigator.msGetUserMedia;
else return undefined;

}

It’s always a good idea to check for compatibility and show the result to the
user. We can do it with the following snippet:

“‘javascript

79

80 CHAPTER 16. HTML5 API: CAMERA

Your browser supports a version of the camera api, success!

Your browser does not support the camera API :(Try a different browser (like
Chrome)

We can also use a tool like Modernizr to gain access to the
getUserMedia api.

Once we’ve determined if the camera API is available, we can request access
to it from the browser. To request access, we’ll need to request which type of
access we would like. There are two types of available input we can take:

• audio
• video

The first argument of the userMedia object is the JSON object of which media
input we are interested. The second two are the success callback function and
the error callback function that get called with their respective place when the
method succeeds or fails.

getUserMedia({
audio: false,
video: true

}, function success(stream) {
// We now have access to the stream

}, function failure(err) {
// It failed for some reason

});

Once one of these callbacks return, we’ll have access to our media api.

Wrap it into a service

Before we get into actually using the API, let’s wrap this component in a service.
This will make it incredibly easy to test later on (not covered in this snippet). It
will also abstract away any dealings we’ll need to do with the userMedia object
and is quite simple:

angular.module('myApp')
.factory('CameraService', function($window) {

var hasUserMedia = function() {
return !!getUserMedia();

}

http://modernizr.com/

81

var getUserMedia = function() {
navigator.getUserMedia = ($window.navigator.getUserMedia ||

$window.navigator.webkitGetUserMedia ||
$window.navigator.mozGetUserMedia ||
$window.navigator.msGetUserMedia);

return navigator.getUserMedia;
}

return {
hasUserMedia: hasUserMedia(),
getUserMedia: getUserMedia

}
})

With this service, we can simply request access to the user media inside of our
other angular objects. For instance:

angular.module('myApp')
.controller('CameraController', function($scope, CameraService) {
$scope.hasUserMedia = CameraService.hasUserMedia;

})

Setting up the directive

Now that we have a hold of the userMedia object, we can request access to it.
Since we’re going to place this element on the page, it’s a good idea to write it
as a directive. The non-camera-specific directive code:

angular.module('myApp')
.directive('camera', function(CameraService) {

return {
restrict: 'EA',
replace: true,
transclude: true,
scope: {},
template: '<div class="camera"><video class="camera" autoplay="" />\

<div ng-transclude></div></div>',
link: function(scope, ele, attrs) {

var w = attrs.width || 320,
h = attrs.height || 200;

if (!CameraService.hasUserMedia) return;
var userMedia = CameraService.getUserMedia(),

82 CHAPTER 16. HTML5 API: CAMERA

videoElement = document.querySelector('video');
// We'll be placing our interaction inside of here

}
}

});

Using the camera API

We can now request access to the camera inside of our link function in the
directive. This simply means that we’ll set up the two callback functions that
will be called from the getUserMedia() method call and then make the request
for permission:

// Inside the link function above
// If the stream works
var onSuccess = function(stream) {

if (navigator.mozGetUserMedia) {
videoElement.mozSrcObject = stream;

} else {
var vendorURL = window.URL || window.webkitURL;
videoElement.src = window.URL.createObjectURL(stream);

}
// Just to make sure it autoplays
videoElement.play();

}
// If there is an error
var onFailure = function(err) {
console.error(err);

}
// Make the request for the media
navigator.getUserMedia({
video: {
mandatory: {
maxHeight: h,
maxWidth: w

}
},
audio: true

}, onSuccess, onFailure);

scope.w = w;
scope.h = h;

Once we’ve asked permission, the video element will get a src url and start
playing. For instance:

83

<div ng-controller="CameraController">
<div ng-if="hasUserMedia">

Demo
<camera ng-if="enabled"></camera>

</div>
<div ng-if="!hasUserMedia" class="sad">
Your browser does not support the camera API

</div>
</div>

Extending the directive

This directive is pretty simple and reasonably so. However, what if we want to
make a call to say, create a snapshot of the current frame. For instance, to allow
our users to take a photo of themselves for a profile photo. This is pretty easy
to do as well. We’ll simply add a function on our scope that will handle taking
the photo for us.

Note, that we will create a way for us to extend the directive with new controls,
each we’ll create in the similar fashion. First, to implement this pattern, we’ll
need to add a controller to our parent directive (camera):

// scope: {},
controller: function($scope, $q, $timeout) {

this.takeSnapshot = function() {
var canvas = document.querySelector('canvas'),

ctx = canvas.getContext('2d'),
videoElement = document.querySelector('video'),
d = $q.defer();

canvas.width = $scope.w;
canvas.height = $scope.h;

$timeout(function() {
ctx.fillRect(0, 0, $scope.w, $scope.h);
ctx.drawImage(videoElement, 0, 0, $scope.w, $scope.h);
d.resolve(canvas.toDataURL());

}, 0);
return d.promise;

}
},
// ...

Now we can safely create camera controls with this parent DOM element. For
instance, the snapshot controller:

84 CHAPTER 16. HTML5 API: CAMERA

.directive('cameraControlSnapshot', function() {
return {
restrict: 'EA',
require: '^camera',
scope: true,
template: '<a ng-click="takeSnapshot()">Take snapshot',
link: function(scope, ele, attrs, cameraController) {
scope.takeSnapshot = function() {
cameraController.takeSnapshot()
.then(function(image) {
// data image here

});
}

}
}

})

This will need to placed inside the camera, like so:

<camera>
<camera-control-snapshot></camera-control-snapshot>

</camera>

Now that you know how to handle the camera inside Angular, put on your best
face and start taking some photos!

The source for the article can be found at the jsbin example.

http://d.pr/7Ntb

Chapter 17

Good deals – Angular and
Groupon

In this recipe, we’re looking at how to connect our application to the great deals
offered by the Groupon API.

The Groupon API requires a an api_key to authenticate the requesting user.
Luckily, getting a Groupon api_key is really easy to do.

Head over to the Groupon API docs page at http://www.groupon.com/pages/
api and click on the giant Get My Api Key button.

After we sign up, we get our API key. Let’s hold on to this key for the time
being.

Providing the API

Anytime that we are building a service that we’ll want to configure, for example
with an API key we’ll want to use the .provider() function to create a service.
This will allow us to craft a service that holds on to our key for future requests.

We’ll write the service to be able to be configured with an api key. This can be
accomplished like so:

angular.module('alGroupon', [])
.provider('Groupon', function() {
// hold on to our generic variables
var apiKey = '',

baseUrl = '//api.groupon.com/v2';

// A function to set the api key

85

http://www.groupon.com/pages/api
http://www.groupon.com/pages/api

86 CHAPTER 17. GOOD DEALS – ANGULAR AND GROUPON

this.setApiKey = function(key) {
apiKey = key || apiKey;

}

this.$get = [function() {
// Service definition

}]
});

In our app, we’ll use this module by setting it as a dependency and then config-
uring our service inside of a .config() function. For example:

angular.module('myApp', ['alGroupon'])
.config(function(GrouponProvider) {
GrouponProvider
.setApiKey('XXXXXXXXXXXXXXXXXXX');

})

Defining the service

Now we haven’t actually created any functionality for the Groupon service. Let’s
go ahead and create a function that will find some of the latest deals.

The API method to get the latest deals (can be found in the docs page) is at the
route /deals.json. Luckily for us, the Groupon API supports JSONP fetching
which allows us to fetch the deals without needing to concern ourselves with
CORS.

Inside of our requests, we’ll need to pass in two parameters for each one of our
requests:

• callback
• client_id

As we have these already available to us in our service, we can create a small
helper function that will create the request parameters we’ll eventually use to
make the service request:

// The service definition
this.$get = ['$q', '$http',

function($q, $http) {
var prepareRequest = function(conf) {
// Ensure we have a config option
conf = conf || {}

87

// Set the callback and the client_id
// in the config object
conf['callback'] = 'JSON_CALLBACK';
conf['client_id'] = api_key
return conf;

}
// ...

}]

With that set, let’s create the function that gets some deals. This simply is a
function that we can set up with the standard $http request:

this.$get = ['$q', '$http',
function($q, $http) {
// ...
var service = {
getDeals: function(conf) {

var d = $q.defer();
conf = prepareRequest(conf);
// Execute the request in the background
$http({
method: 'JSONP',
url: baseUrl + '/deals.json',
params: conf

}).success(function(data) {
d.resolve(data.deals);

}).error(function(reason) {
d.reject(reason);

})
return d.promise;

}
}
return service;

}]

We’re creating a custom promise in this example. Although this
isn’t necessary, it allows us to pass back custom data. In here, we’re
passing back not just data, but data.deals.

Now, we can simply inject this into our controller and call getDeals on the
service as we would any other service.

angular.module('myApp', ['alGroupon'])
.controller('GrouponController',

88 CHAPTER 17. GOOD DEALS – ANGULAR AND GROUPON

function($scope, Groupon) {
$scope.getDeals = function() {
Groupon.getDeals()
.then(function(deals) {
$scope.deals = deals;

});
}

});

We can use this like so:

<div ng-controller='GrouponExampleController'>
<a ng-click="getDeals()" class="btn btn-warning">Get deals
<div ng-show="showing">

<a ng-click="showing=!showing" class="btn btn-primary">Hide

</div>
</div>

Notice in our function we allow the user pass in configuration for the requests.
We can use this configuration object to customize our request to the Groupon
API.

That’s it. Connecting with Groupon is that easy with our configurable service.

The Groupon API documentation can be found here.

The source for this recipe can be found live at jsbin.

http://www.groupon.com/pages/api
http://d.pr/DpHx

Chapter 18

Staggering animations with
ngAnimate

After getting a glimpse at how to perform animations with ngAnimate in last
week’s ng-newsletter entry: AngularJS with ngAnimate, let’s expand our knowl-
edge and learn how to supercharge our animations even further. What are we
going to learn? Staggering Animations!

AngularJS 1.2 introduces a hidden, but powerful, CSS trick that informs
$animate to stagger all successive CSS animations into a curtain-like effect.

It is best to stick to using AngularJS 1.2.4 or higher to make use of
the best animation features.

How can we put this to use?

Let’s say we have a ngRepeat animation and, instead of everything animating
at the same time, we would like there to be a 50 millisecond delay between each
enter operation. This would be quite difficult to do on our own using JavaScript
with timeout delays, but luckily it is very easy to do using ngAnimate by adding
some additional CSS code that the ‘$animate service understands.

Let’s continue off our our code from last week’s article and apply some
stagger animations to it. What did we have? Just a few simple transition
animations for the enter, leave and move events on a list of items rendered by
ngRepeat.

/*
* ngRepeat triggers three animation events: enter, leave and move.

89

http://www.ng-newsletter.com/advent2013/#!/day/11

90 CHAPTER 18. STAGGERING ANIMATIONS WITH NGANIMATE

*/
.repeat-animation.ng-enter,
.repeat-animation.ng-leave,
.repeat-animation.ng-move {

-webkit-transition:0.5s linear all;
transition:0.5s linear all;

}

/* ending enter and move styling
(this is what the element will animate from */

.repeat-animation.ng-enter,

.repeat-animation.ng-move { opacity:0; }

/* ending enter and move styling
(this is what the element will animate towards */

.repeat-animation.ng-enter.ng-enter-active,

.repeat-animation.ng-move.ng-move-active { opacity:1; }

/* starting leave animation */
.repeat-animation.ng-leave { opacity:1; }

/* ending leave animation */
.repeat-animation.ng-leave.ng-leave-active { opacity:0; }

Click here to see the full HTML + CSS code.

Now let’s enhance this by adding in a stagger effect to the enter, leave and
move animations.

.repeat-animation.ng-enter,

.repeat-animation.ng-leave,

.repeat-animation.ng-move {
-webkit-transition:0.5s linear all;
transition:0.5s linear all;

}

.repeat-animation.ng-enter-stagger,

.repeat-animation.ng-leave-stagger,

.repeat-animation.ng-move-stagger {
/* 50ms between each item being animated after the other */
-webkit-transition-delay:50ms;
transition-delay:50ms;

/* this is required here to prevent any CSS inheritance issues */
-webkit-transition-duration:0;
transition-duration:0;

http://www.ng-newsletter.com/advent2013/#!/day/11

WHAT ABOUT CSS3 KEYFRAME ANIMATIONS? 91

}

/* the rest of the CSS code... */

And voila! We have a nice delay gap between each item being entered. To see
this demo in action, click on the link below.

http://d.pr/l4ln

What about CSS3 Keyframe Animations?

The code above was crafted together using CSS transitions, but CSS keyframe
animations can also be used to trigger the animation. Let’s expand our code
from above, change the CSS styling to use keyframe animations instead of tran-
sitions.

The keyframe animation code is very similar to our transition code, but instead
of using transition we use animation.

.repeat-animation.ng-enter {
-webkit-animation: enter_animation 0.5s;
animation: enter_animation 0.5s;

}
.repeat-animation.ng-leave {

-webkit-animation: leave_animation 0.5s;
animation: leave_animation 0.5s;

}

@-webkit-keyframes enter_animation {
from { opacity:0; }
to { opacity:1; }

}

@keyframes enter_animation {
from { opacity:0; }
to { opacity:1; }

}

@-webkit-keyframes leave_animation {
from { opacity:1; }
to { opacity:0; }

}

@keyframes leave_animation {
from { opacity:1; }

http://d.pr/l4ln

92 CHAPTER 18. STAGGERING ANIMATIONS WITH NGANIMATE

to { opacity:0; }
}

(click here to get learn the basics of ngAnimate with keyframe animations).
So far so good. Now let’s enhance that yet again using some stagger CSS code

.repeat-animation.ng-enter-stagger,

.repeat-animation.ng-leave-stagger,

.repeat-animation.ng-move-stagger {
/* notice how we're using animation instead of transition here */
-webkit-animation-delay:50ms;
animation-delay:50ms;

/* yes we still need to do this too */
-webkit-animation-duration:0;
animation-duration:0;

}

/* the rest of the CSS code... */

Keep in mind, however, that CSS Keyframe animations are triggered only after
the “reflow” operation has run within an animation triggered by ngAnimate.
This means that, depending on how many animations are being run in parallel,
the element may appear in a pre-animated state for a fraction of a second.
Why? Well this is a performance boost that the $animate service uses internally
to queue up animations together to combine everything to render under one
single reflow operation. So if our animation code starts off with the element
being hidden (say opacity:0) then the element may appear as visible before the
animation starts. To inform $animate to style the element beforehand, we can
just place some extra CSS code into our setup CSS class (the same CSS class
where we reference the actual keyframe animation).

.repeat-animation.ng-enter {
/* pre-reflow animation styling */
opacity:0;

/* the animation code itself */
-webkit-animation: enter_animation 0.5s;
animation: enter_animation 0.5s;

}

And finally, here’s a link to our amazing, stagger-enhanced, CSS keyframe ani-
mation code: http://d.pr/dmQk.
Ahh this is sweet isn’t it?

http://www.ng-newsletter.com/advent2013/#!/day/11
http://d.pr/dmQk

WHAT DIRECTIVES SUPPORT THIS? 93

What directives support this?

Both ngRepeat and ngClass support this, however, any angular directive can
support it as well. It isn’t actually the directive that triggers this animation, but
instead, a stagger animation will be triggered if two or more animations
of the same animation event residing within the same element container (the
parent element) are issued at the same time. And with ngRepeat this
happens automatically.

To get this to work with a directive like ngClass then it is just a matter of
triggering a series of CSS class changes on a series of elements all under the
same parent class. Please visit the yearofmoo article at the end of this article
to view some awesome examples to issue animations using ngClass.

Understanding how this works can help us make stagger effects in our own
directive code by using the helpful DOM operations available on the $animate
method.

Click here to get a full understanding of how stagger animations are triggered
by the $animate service.

But what about JS animations?

Right now staggering animations are not provided within JavaScript animations.
This is because the feature itself is very new and young so it’s best to see
how popular and well this feature plays out on the web before cramming more
features into AngularJS.

However, all is not lost, the helpful yearofmoo article below goes into detail
about how to piece together a stagger-like animation using JavaScript anima-
tions in ngAnimate.

Where can I learn more?

An in-depth article, examples and a demo repo is available on www.yearofmoo.com
in the article entitled: Staggering Animations in AngularJS. This article goes
into detail on how to make use of staggering animations with ngAnimate, how
to create custom directives to hook into staggering animations, and also how
to wire them together with the amazing animate.css CSS animation library.

This article was written by Matias Niemela (aka @yearofmoo) of www.yearofmoo.com
and edited by Ari Lerner (aka @auser) of ng-newsletter.

http://docs.angularjs.org/api/ngAnimate#usage_css-defined-animations_css-staggering-animations
http://www.yearofmoo.com
http://www.yearofmoo.com/2013/12/staggering-animations-in-angularjs.html
http://www.yearofmoo.com
http://www.ng-newsletter.com

94 CHAPTER 18. STAGGERING ANIMATIONS WITH NGANIMATE

Chapter 19

Getting started unit-testing
Angular

One of the fundamental reasons for choosing Angular is cited as that it is built
with testing in mind. We can build complex web applications using various
popular frameworks and libraries with features as tall as the sky and as equally
complex. As with anything of increasing complexity and density, this can quickly
grow out of hand.

Testing is a good approach to keep code maintainable, understandable, debug-
able, and bug-free. A good test suite can help us find problems before they rise
up in production and at scale. It can make our software more reliable, more
fun, and help us sleep better at night.

There are several schools of thought about how to test and when to test. As
this snippet is more about getting us to the tests, we’ll only briefly look at the
different options. In testing, we can either:

• Write tests first (Test-Driven Development | TDD) where we write a test
to match the functionality and API we expect out of our element

• Write tests last where we confirm the functionality works as expected
(WBT | Write-behind testing)

• Write tests to black-box test the functionality of the overall system

For the application that we’re working on, it’s really up to us to determine
what style makes sense for our application. In some cases, we operate using
TDD style, while in others we operate with WBT.

We generally follow the following pattern when choosing a testing
style: while we’re at prototyping phase (or just after), we generally

95

96 CHAPTER 19. GETTING STARTED UNIT-TESTING ANGULAR

work with WBT testing as we don’t always have a solidified API
we’re working with. Additionally, our team is generally pretty small.
Otherwise, when our application starts to grow, we switch over to
drive our functionality through testing.

Getting started

Enough chit-chat, let’s test!

There are several libraries that we can use right out of the box when testing
angular apps. The currently, most popularly supported framework released and
sponsored by the Google team is called karma.

If we’re not using the yeoman.io generator, we’ll need to install karma for
development puposes. Installing karma can by done using the npm tool, which
is a package manager for node and comes built-in:

$ npm install --save-dev karma

If we’re using the yeoman generator with our apps, this is already
set up for us.

Karma works by launching a browser, loading our app or a derivative of our
source files and running tests that we write against our source code. In order to
use karma, we’ll need to tell the framework about our files and all the various
requirements.

To kick it off, we’ll use the karma init command which will generate the initial
template that we’ll use to build our tests:

$ karma init karma.conf.js

It will ask us a series of questions and when it’s done, it will create a configu-
ration file. Personally, we usually go through and answer yes to as many which
are asked (except without RequireJS). We like to fill in the files: section
manually (see below).

When it’s done, it will create a file in the same directory where we ran the
generator that looks similar to the following:

// Karma configuration
module.exports = function(config) {
config.set({
// base path, that will be used to resolve files and exclude
basePath: '',

97

// testing framework to use (jasmine/mocha/qunit/...)
frameworks: ['jasmine'],

// list of files / patterns to load in the browser
files: [
'app/components/angular/angular.js',
'app/components/angular-mocks/angular-mocks.js',
'app/scripts/**/*.js',
'test/spec/**/*.js'

],

// list of files / patterns to exclude
exclude: [],

// web server port
port: 8080,

// level of logging
// possible values:
// LOG_DISABLE || LOG_ERROR || LOG_WARN || LOG_INFO || LOG_DEBUG
logLevel: config.LOG_INFO,

// enable / disable watching file and executing tests
// whenever any file changes
autoWatch: false,

// Start these browsers, currently available:
// - Chrome
// - ChromeCanary
// - Firefox
// - Opera
// - Safari (only Mac)
// - PhantomJS
// - IE (only Windows)
browsers: ['Chrome'],

// Continuous Integration mode
// if true, it capture browsers, run tests and exit
singleRun: false

});
};

This karma.conf.js file describes a simple unit test that karma will load when
we start writing tests. We can also tell it to build an e2e, or end-to-end test

98 CHAPTER 19. GETTING STARTED UNIT-TESTING ANGULAR

that is specifically intended for building black-box style testing, but that’s for
another snippet/article.

Note that we need to have angular-mocks.js and our angular code
available to reference inside the karma.conf.js file.

Now that we have our karma.conf.js file generated, we can kick off karma by
issuing the following command:

$ karma start karma.conf.js

If we haven’t run it before, it’s likely going to fail or at least report errors of
files not being found. Let’s start writing our first test.

In Write-Behind development, we’re going to test the following controller:

angular.module('myApp', [])
.controller('MainController', function($scope) {
$scope.name = "Ari";
$scope.sayHello = function() {
$scope.greeting = "Hello " + $scope.name;

}
})

First, let’s create the actual test file in test/spec/controllers/main.js.
Since karma works well with Jasmine, we’ll be using the Jasmine framework as
the basis for our tests.

For information on Jasmine, check out their fantastic documentation
at http://jasmine.github.io/2.0/introduction.html.

Inside our freshly created file, let’s add the test block:

describe('Unit: MainController', function() {
// Our tests will go here

})

Great! Now we need to do a few things to tell our tests what we are test-
ing. We need to tell it what module we are testing. We can do this by us-
ing the beforeEach() function to load the angular module that contains our
MainController (in this case, it’s just myApp):

http://jasmine.github.io/2.0/introduction.html

99

describe('Unit: MainController', function() {
// Load the module with MainController
beforeEach(module('myApp'));

})

Next, we’re going to pretend that we’re angular loading the controller when it
needs to be instantiated on the page. We can do this by manually instantiating
the controller and handing it a $scope object. Creating it manually will also
allow us to interact with the scope throughout the tests.

describe('Unit: MainController', function() {
// Load the module with MainController
beforeEach(module('myApp'));

var ctrl, scope;
// inject the $controller and $rootScope services
// in the beforeEach block
beforeEach(inject(function($controller, $rootScope) {
// Create a new scope that's a child of the $rootScope
scope = $rootScope.$new();
// Create the controller
ctrl = $controller('MainController', {
$scope: scope

});
}));

})

Now, we have access to both the controller as well as the scope of the controller.

Writing a test

Now that everything is all set up and ready for testing, let’s write one. It’s
always a good idea to test functionality of code that we write. Anytime that
variables can be manipulated by the user or we’re running any custom actions,
it’s usually a good idea to write a test for it.

In this case, we won’t need to test setting the name to “Ari” as we know that
will work (it’s JavaScript). What we would like to know, however is that the
sayHello() function works as-expected.

The sayHello() method simply preprends the $scope.name to a variable called
$scope.greeting. We can write a test that verifies that $scope.greeting is
undefined before running and then filled with our expected message after we
run the function:

100 CHAPTER 19. GETTING STARTED UNIT-TESTING ANGULAR

describe('Unit: MainController', function() {
// Load the module with MainController
beforeEach(module('myApp'));

var ctrl, scope;
// inject the $controller and $rootScope services
// in the beforeEach block
beforeEach(inject(function($controller, $rootScope) {
// Create a new scope that's a child of the $rootScope
scope = $rootScope.$new();
// Create the controller
ctrl = $controller('MainController', {
$scope: scope

});
}));

it('should create $scope.greeting when calling sayHello',
function() {
expect(scope.greeting).toBeUndefined();
scope.sayHello();
expect(scope.greeting).toEqual("Hello Ari");

});
})

We have access to all different parts of the controller through the scope of it
now. Feel the power of testing? This is only the beginning. For a deeper dive
into testing, check out the expansive testing chapter in ng-book.

https://ng-book.com

Chapter 20

Build a Real-Time,
Collaborative Wishlist with
GoAngular v2

GoInstant is a platform for building real-time, collaborative web and mobile
apps. We don’t need to worry about creating a separate back-end or server
infrastructure, GoInstant will handle that part for us.

GoAngular, the GoInstant integration with AngularJS, makes it incredibly easy
to use Angular and GoInstant together. The GoInstant team just released their
V2 which is WAY more powerful than the V1 and made some big improvements
including:

• Access to all of GoInstant’s most powerful features! Including: user-
management, presence, and a real-time data store.

• Promise-based API

In this snippet, we’re going to look at how to use GoInstant and GoAngular to
create the collaborative wishlist you see below. Check out the final version of
the app here.

We only need NodeJS and npm installed to get our wishlist app up
and running. For more information on installing NodeJS, check out
the nodejs.org page.

If you want to follow along, the source is available at https://github.com/
mattcreager/goangular-wishlist-example and includes directions to help you get
up and running.

101

https://developers.goinstant.com/v1/GoAngular/index.html
https://goinstant.com/blog/the-goinstant-api-now-supports-promises-for-better-async-javascript-support
http://secret-citadel-9867.herokuapp.com/
http://nodejs.org/
https://github.com/mattcreager/goangular-wishlist-example
https://github.com/mattcreager/goangular-wishlist-example

102CHAPTER 20. BUILD A REAL-TIME, COLLABORATIVE WISHLIST WITH GOANGULAR V2

SIGN UP FOR GOINSTANT 103

Sign up for GoInstant

Before we can get started, we’ll need to sign up for GoInstant and create an
app. Let’s call it wishlist.

angular.module('WishList', []);

Include GoInstant & GoAngular

Next we’ll add our external dependencies: GoInstant and GoAngular are avail-
able on bower or via their CDN.

In our index.html, we’ll need to make sure the following lines are added:

<script
src="https://cdn.goinstant.net/v1/platform.min.js">
</script>
<script
src="https://cdn.goinstant.net/integrations/goangular/v2.0.0/goangular.min.js">
</script>

Add GoAngular as a dependency

Let’s hit two birds with one stone: We’ll declare dependencies for our app
module and controller, and configure our GoInstant connection, with the URL
we retrieved in step one.

angular.module('WishList', ['goangular'])
.config(function(goConnectionProvider) {
// Connect to our GoInstant backend url
goConnectionProvider.set(CONFIG.connectUrl);

})

After we’ve included goangular as a dependency for our app, we can inject
the goConnection into our angular objects, which we’ll use to connect to our
GoInstant back-end:

.controller('ListController', function($scope, goConnection) {
// goConnection is available in here

});

https://goinstant.com/signup

104CHAPTER 20. BUILD A REAL-TIME, COLLABORATIVE WISHLIST WITH GOANGULAR V2

Create and Join a Room

Before we can access a key, we need to be in a room, which is the GoInstant
idiom for channels. The goConnection service provides easy access to our pre-
configured connection; we’ll use that to create and join a room:

angular.module(‘WishList’, [‘goangular’])
.controller('ListController', function($scope, goConnection) {

var itemsKey;

goConnection.ready()
.then(function(goinstant) {
// create a room, join it and return a promise
return goinstant.room('a-list').join().get('room');

});
});

Notice that we’re returning a promise inside of the goConnection connection.
This tells the GoInstant library to resolve the promise and then pass it along the
promise chain. Specifically, this allows us to interact with the promised object
in the promise chain.

Using the promise chain guarantees that the interaction with GoInstant will be
asynchronous and fits naturally into the async flow of javascript.

Fetch our wishes

Now we can use the room from the previous promise inside the next promise. In
this case, we’re trickling information down from the room, which in turn gets
used to fetch the list of items inside the room, which finally gets resolved onto
the $scope object as $scope.items.

goConnection.ready().then(function(goinstant) {
return goinstant.room('a-list').join().get('room');

}).then(function(room) {
return room.key('items').get();

}).then(function(result) {
$scope.items = result.value || {};

}).finally($scope.$apply);

This interaction is actually quite performant and also makes it incredibly easy
to test the features of our app.

WATCH OUR WISHES, SO WE KNOW WHEN THEY CHANGE 105

Watch our wishes, so we know when they change

When a wish is added, we can just add it to our model: $scope.items.

var itemsKey;

goConnection.ready().then(function(goinstant) {
return goinstant.room('a-list').join().get('room');

}).then(function(room) {
itemsKey = room.key('items');

return itemsKey.get();
}).then(function(result) {
$scope.items = result.value || {};

$scope.addWish = function() {
itemsKey.add($scope.wish);

};

itemsKey.on('add', {
local: true,
listener: function(value, context) {
$scope.$apply(function() {

var itemKey = context.addedKey.split('/')
$scope.items[itemKey[itemKey.length -1]] = value;

});
}

});
}).finally($scope.$apply);

There we have it, a functional real-time, collaborative wishlist! Dig in further
with GoAngular’s documentation, join the conversation in IRC.

From our experience, the team is incredibly responsive and will accept feedback
to support@goinstant.com.

The GoAngular team recorded a screencast that walks through this process!
Check it out at https://www.youtube.com/watch?v=6KspFPDOaMY&hd=1.

https://developers.goinstant.com/v1/GoAngular/index.html
irc://irc.freenode.net#goinstant
support@goinstant.com
https://www.youtube.com/watch?v=6KspFPDOaMY&hd=1

106CHAPTER 20. BUILD A REAL-TIME, COLLABORATIVE WISHLIST WITH GOANGULAR V2

Chapter 21

Immediately satisfying
users with a splash page

One of the common questions we get as teachers of Angular is how can we
prevent the Flash Of Unrendered Content (FOUC). We covered a few methods
to handle hiding this unrendered content on Day 3, but these simply hide the
content from the user.
Hiding content, especially on mobile can make our app appear to not be working,
slow, or broken. Rather than let our users think that our app is broken, we can
address it specifically by showing them something while they wait for our app
to load.

We spoke about this in our talk at Google (view it here)

One incredibly short introduction how the browser works

When the browser, any browser gets HTML it will start to parse the HTML
into a tree. We refer to this tree as the Document Object Model, or the DOM
for short. When the browser has parsed the entire HTML, it will start walking
down the tree and begin laying out the elements.
If it encounters an element that requires it to fetch data from a remote site,
such as a <link> tag or a <script> tag with a src attribute, the browser will
immediately try to fetch the resource before continuing on down the tree.
Additionally, any element in the <head> will be fetched before the rest of the
document has been parsed and presented on-screen.
The browser takes care of placing elements on the screen as it encounters ele-
ments. This process is usually quite fast, but slow connections and slow devices
allow us to see it in full-blown action.

107

https://www.youtube.com/watch?v=xOAG7Ab_Oz0&feature=youtu.be&hd=1

108CHAPTER 21. IMMEDIATELY SATISFYING USERS WITH A SPLASH PAGE

So what can we do?

Use this process to our advantage

We can use the fact that the browser starts to render elements as soon as it
encounters them to show a splash screen while the rest of the page is loading.
A splash screen is simply a full-screen block of HTML that we will show when
the page is loading.
To implement a splash screen, we’ll need to strip all of the loading of any external
files OUTSIDE of the <head> element. This includes any external CSS and
JavaScript. The only elements we want in the <head> element are meta tags,
the <title> element, and any in-line styles that our splash screen will use (as
we’ll see shortly).
Secondly, the first element that we want in our <body> tag is the splash screen
head element. This way, once the browser starts parsing the <body> tag it will
lay out the splash screen elements and style them before it starts to load any
other files.

<html>
<head>

<title>My Angular App</title>
<style type="text/css">
.splash {}

</style>
</head>
<body ng-app="myApp">
<!-- The splash screen must be first -->
<div id="splash" ng-cloak>

<h2>Loading</h2>
</div>
<!-- The rest of our app -->
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.11/angular.min.js">

</script>
<div ng-controller="MainController">
</div>
<script src="js/app.js"></script>

</body>
</html>

Laying out our page like this will give us the most optimal appearing loading
of our app. What goes inside our splash screen element is really up to us. The
more we can inline the elements that appear in the splash screen, the faster it
will run.

109

Using base64 encoding for our images or SVG elements are easy methods of
making our splash screen appear to be part of the normal, non-static flow of
a splash screen. The more external elements we place inside of the top-most
element, the slower it will appear.

Now, once we have our HTML setup like what we have above, we’ll need to
style our <div id="splash"> element. We can do this by placing the style
definitions in the sole <style> element in the <head> tag of our page.

<head>
<title>My Angular App</title>
<style type="text/css">
/* some naive styles for a splash page */
.splash {

background: blue;
color: white;

}
.splash h2 {

font-size: 2.1em;
font-weight: 500;

}
</style>

</head>

Hiding our splash screen when the app is ready

Lastly, we’ll need to make sure that our splash screen goes away at the end of
the loading process and let our app reclaim the page.

We can do this using the ngCloak directive that is built into Angular itself. The
ngCloak directive’s entire responsibility is to hide uncompiled content from the
browser before the angular app has been loaded.

The ngCloak directive works by adding a CSS class to the element that sets a
display: none !important; to the element. Once the page has been loaded
and angular is bootstrapping our app, it will remove the ng-cloak class from
the element which will remove the display: none and show the element.

We can hijack this ngCloak directive for the splash page and invert the style for
the splash element only. For example, in the CSS in our <head> element, we
can place the following CSS definitions:

[ng-cloak].splash {
display: block !important;

}
[ng-cloak] {display: none;}

110CHAPTER 21. IMMEDIATELY SATISFYING USERS WITH A SPLASH PAGE

/* some naive styles for a splash page */
.splash {

background: blue;
color: white;

}
.splash h2 {

font-size: 2.1em;
font-weight: 500;

}

With this in place, our splash screen will load and be shown in our app before
anything else is shown and we made NO changes to the functionality of our
app.

For more information on mobile, stay tuned to ng-newsletter for
updates on our upcoming in-depth screencast on developing mobile
apps with Angular.

http://www.ng-newsletter.com

Chapter 22

A Few of My Favorite
Things: Isolated Expression
Scope

What do we do when we need to create a component that needs to be reusable
and want to give other developers the ability to use that component however
they wish?

In AngularJS, isolated expression scope is a really powerful tool that allows
us to delegate units of work to the parent controller of a directive instead of
handling it internally. This flexibility allows us to use the same directive over
and over but have it do totally different things depending on how we define it
in the HTML.

In this article, we are going to create a single directive that we will use seven
times to do completely different things. When we are finished, we will have seen
the power and flexibility of isolated expression scope applied in an approachable
manner that you can start to using immediately. Let’s get started!

The code for this article is here

Isolated Expression Scope

We are going to create a vote directive that has an vote-up and vote-down
method. Isolated expression scope comes into play the moment we decide that
we want to be able to increment and decrement the vote count by varying
denominations. In our case, we want one vote directive instance to increment
and decrement the vote count by 100, another to increment and decrement the
vote count by 10 and so on.

111

http://plnkr.co/edit/ThUoam9WMOBD93gfIVGL?p=preview

112CHAPTER 22. A FEW OF MY FAVORITE THINGS: ISOLATED EXPRESSION SCOPE

We will use the HTML as a starting point and walk through how the vote
directive actually comes to together. We have a MainController that has a
property of votes that we are going to use to keep track of our total vote count.
We also have three vote components on the page and in each one we are defining
label, vote-up and vote-down differently.

<div class="container" ng-controller="MainController">
<h1>Current Votes: {{votes}}</h1>
<hr>
<h3>Isolated Expression Scope</h3>
<div class="vote-container">

<vote label="100" vote-up="incrementHundred()"
vote-down="decrementHundred()"></vote>

<vote label="10" vote-up="incrementTen()"
vote-down="decrementTen()"></vote>

<vote label="1" vote-up="incrementOne()"
vote-down="decrementOne()"></vote>

</div>
</div>

Notice that the label corresponds with the denomination that the vote directive
increments or decrements the vote count. The directive with the label 100 has a
method of incrementHundred and decrementHundred which does exactly that
to the votes property.

Now that we have created some AngularJS requirements by defining them in
our HTML, let us fulfill those in our JavaScript. First up, we have created the
MainController with the votes property defined on scope as well as all of the
increment and decrement properties we declared.

Just below that we are going to declare the vote directive.

angular.module('website', [])
.controller('MainController', ['$scope',

function($scope) {
$scope.votes = 0;

$scope.incrementOne = function() {
$scope.votes += 1;

};

$scope.decrementOne = function() {
$scope.votes -= 1;

};

$scope.incrementTen = function() {

113

$scope.votes += 10;
};

$scope.decrementTen = function() {
$scope.votes -= 10;

};

$scope.incrementHundred = function() {
$scope.votes += 100;

};

$scope.decrementHundred = function() {
$scope.votes -= 100;

};
}

])
.directive('vote', function() {

return {
restrict: 'E',
templateUrl: 'vote.html',
scope: {
voteUp: '&',
voteDown: '&',
label: '@'

}
};

});

The vote directive is fairly simple in that we have restricted it to an element
node with restrict: 'E' and declared the template with templateUrl:
'Vote.html'.
We are creating isolated scope by defining an object i.e.: {} for the scope
property on the directive definition object.
An attribute isolated scope is being created for the label property with label:
'@' which means we are creating a uni-directional binding from the parent
scope to the directive to tell us what the label attribute evaluates to. This is
appropriate because we only want to read the property and we never need to
set it.
Expression isolated scope is being created for voteUp and voteDown with
voteUp: '&' and voteDown: '&'. What this means is that when we call
voteUp or voteDown in our directive, it will call whatever method we defined
in that attribute on our directive.
For instance, because we have defined incrementHundred() in our vote-up
attribute in the code below, when we call voteUp on our directive it will call

114CHAPTER 22. A FEW OF MY FAVORITE THINGS: ISOLATED EXPRESSION SCOPE

incrementHundred() on the parent scope.

AngularJS converts camel-case to snake-case when moving from
JavaScript to HTML. That is why we are using voteUp in our
JavaScript and vote-up in the HTML.

And for our directive markup, we have an anchor tag that calls voteUp on
ng-click, a div that displays the label value and another anchor tag to call
voteDown.

<div class="vote-set">

<div class="number">{{label}}</div>

</div>

And now we have created a vote directive that we are using in three places to
increment the vote count with different denominations.

Isolated Expression Scope with Variables

Occasionally we need to pass a value back to the parent controller as a parameter
on the expression we have bound to and so this is what we are going to tackle
next.

In our previous example we have defined 6 methods to handle the increment
and decrement operations but that seems a little verbose. Wouldn’t it be nice
if we could consolidate those methods and just send in the value that we want
to increment or decrement the vote count by?

In the HTML below, we have set things into motion by defining an
incrementVote and decrementVote method that accepts unit as a pa-
rameter.

<div class="container" ng-controller="MainController">
<h1>Current Votes: {{votes}}</h1>
<hr>
<h3>Isolated Expression Scope with Variables</h3>
<div class="vote-container">

<vote label="9" vote-up="incrementVote(unit)"
vote-down="decrementVote(unit)"></vote>

<vote label="6" vote-up="incrementVote(unit)"
vote-down="decrementVote(unit)"></vote>

<vote label="3" vote-up="incrementVote(unit)"

115

vote-down="decrementVote(unit)"></vote>
</div>

</div>

And in the template markup below, we are going to call voteUp and voteDown
and with a value for the parent controller.

<div class="vote-set">
<a href="#" class="icon-arrow-up"
ng-click="voteUp({unit:label})">

<div class="number">{{label}}</div>
<a href="#" class="icon-arrow-down"
ng-click="voteDown({unit:label})">

</div>

The most important thing to keep in mind when passing variables
with isolated expressions is that we do not pass them one-by-one but
with a parameter object.

We are going to use the value we defined for the label property as our unit
value. And in the MainController, we will take the the unit value and cast it
to an integer with parseInt(unit,10) and add or subtract it to $scope.votes.

angular.module('website', [])
.controller('MainController', ['$scope',

function($scope) {
$scope.votes = 0;

// ...

$scope.incrementVote = function(unit) {
$scope.votes += parseInt(unit,10);

};

$scope.decrementVote = function(unit) {
$scope.votes -= parseInt(unit,10);

};
}

])

Isolated Expression Scope with Multiple Methods

We are going to wrap things up with one more neat thing that you can do with
isolated expression scope. We can actually bind more than one method to a
single expression on the directive.

116CHAPTER 22. A FEW OF MY FAVORITE THINGS: ISOLATED EXPRESSION SCOPE

For the sake of illustration, we are going to add a vote directive that increments
and decrements the vote count by 1000. When this happens, we want to call a
second method called alertAuthorities because clearly something is amiss!

<div class="container" ng-controller="MainController">
<h1>Current Votes: {{votes}}</h1>
<hr>
<h3>Isolated Expression Scope with Multiple Methods</h3>
<div class="vote-container">

<vote label="1000"
vote-up="incrementVote(1000);alertAuthorities();"
vote-down="decrementVote(1000);alertAuthorities();">
</vote>

</div>
<hr>
<div ng-if="alert" class="alert alert-danger">{{alert}}</div>

</div>

We are showing an alert div if there is an alert defined on $scope which we
set in the code below.

angular.module('website', [])
.controller('MainController', ['$scope',

function($scope) {
$scope.votes = 0;

// ...

$scope.incrementVote = function(unit) {
$scope.votes += parseInt(unit,10);

};

$scope.decrementVote = function(unit) {
$scope.votes -= parseInt(unit,10);

};

$scope.alertAuthorities = function() {
$scope.alert = 'The authorities have been alerted!';

};
}

])

By calling voteUp or voteDown on this particular vote directive, we are not
only calling incrementVote or decrementVote but alertAuthorities as well.

117

In Conclusion

We started out with a simple isolated expression scope example and then ex-
tended it to pass values from the directive to the parent controller. And then to
wrap things up, we learned how we could actually call more than one method
on a parent controller using expression isolated scope.

This snippet was written by Lukas Ruebbelke (aka @simpulton) and edited by
Ari Lerner (aka @auser).

118CHAPTER 22. A FEW OF MY FAVORITE THINGS: ISOLATED EXPRESSION SCOPE

Chapter 23

Conclusion

We hope you enjoyed our mini Angular cookbook and can’t wait to see what
you create with these snippets!

For more in-depth Angular coverage, check out our 600+ page ng-book. It
covers these type of snippets and much much more, including authentication,
optimizations, validations, building chrome apps, security, SEO, the most de-
tailed testing coverage available, and much much more!

Stay tuned to ng-newsletter for our new screencast series where we’ll feature
highly detailed angular recipes with both back-end support and detailed walk-
throughs of complete, professional applications.

Finally, enjoy our weekly newsletter: the best, hand-curated Angular informa-
tion delivered to your inbox once a week.

Cheers!

119

https://ng-book.com

	Welcome
	The short guide to service definitions
	A short guide to routing
	Preventing flickering
	Conditionally applying CSS classes
	Setting configs in angular
	The Power of Expression Binding
	Optimizing Angular: the view (part 1)
	Optimizing Angular: the view (part 2)
	Getting connected to data
	Real-time Presence Made Easy with AngularJS and Firebase
	Pushy Angular
	AngularJS SEO, mistakes to avoid.
	AngularJS with ngAnimate
	What directives support animations?
	CSS3 Transitions & Keyframe Animations
	JavaScript Animations
	Triggering Animations inside of our own Directives
	Learn more! Become a Pro

	HTML5 api: geolocation
	HTML5 api: camera
	Good deals – Angular and Groupon
	Staggering animations with ngAnimate
	How can we put this to use?
	What about CSS3 Keyframe Animations?
	What directives support this?
	But what about JS animations?
	Where can I learn more?

	Getting started unit-testing Angular
	Build a Real-Time, Collaborative Wishlist with GoAngular v2
	Sign up for GoInstant
	Include GoInstant & GoAngular
	Create and Join a Room
	Fetch our wishes
	Watch our wishes, so we know when they change

	Immediately satisfying users with a splash page
	A Few of My Favorite Things: Isolated Expression Scope
	Conclusion

